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Abstract—In this paper, a clustering algorithm is proposed
that dynamically determines the locations of fog nodes in 5G
wireless networks, which are upgraded from small cells, in
order to maximize throughput assuming the number of fog
nodes and small cells are given as a priori information. The
proposed algorithm dynamically clusters the small cells around
the fog nodes. The approach is based on a soft clustering
model where one small cell can be connected to many fog
nodes. The numerical results demonstrate that the proposed
clustering algorithm significantly enhances the throughput and
lowers the latency with respect to the distance-based K-means
hard clustering algorithm or Voronoi tessellation model.

Index Terms—HetNets, clustering, fog computing.

I. INTRODUCTION

Heterogeneous networks (HetNets) that have many small
cells (SCs) overlaid in macrocells are of paramount interest
to address the huge throughput increase [1]. The biggest
challenge in HetNets is the interference stemming from the
lack of coordination among SCs. This might be overcome
by fog networking, which can control and coordinate the
SCs to ensure better interference mitigation [2],[3]. Adapting
the principles of fog computing by upgrading some SCs to
fog nodes to solve the performance challenges in HetNets
is a promising approach. However, there are many unsolved
issues in the integration of fog computing with HetNets.
Determination, or selection, of the fog nodes among many
SCs and the connection of other SCs to the fog nodes, i.e.,
which SCs are served by which fog nodes, are open issues
that are worth studying.

The simplest approach is to employ the classic Voronoi
tessellation model so that SCs are clustered according to their
distances and the leader of each cluster, i.e., cluster-head
becomes fog node and each SC is assigned to the closest fog
point, which corresponds to the K-means clustering algorithm
in machine learning [4]. However, this algorithm does not
guarantee a high throughput, because the fog node at the
closest distance may have the poorest channel for that SC. The
primary goal of this paper is to increase the overall data rate
(i.e., throughput) by proposing a novel clustering algorithm to
meet the various requirements in 5G that can be employed for
both downlink and uplink. It is worth noting that the higher the
data rate the smaller the transmission delay and the smaller
the queueing delay, because the service rate of the queues is
directly proportional to the data rate, which, in turn, can ensure
more stable queues in the SCs. Hence, maximizing the data

rate, or throughput, will minimize latency when all parameters
are kept constant.

Fog or edge computing has been extensively studied to
provide location-aware services to the mobile end users with
higher data rate and lower latency, e.g., see [5]-[7] and
references therein. However, selecting the locations of the
fog nodes among many SCs, whose locations are all known,
and clustering the SCs around fog nodes so as to enable
improved service has not yet been considered1. Moreover, the
widely used clustering algorithms in machine learning such
as K-means clustering algorithm [4], fuzzy clustering-means
(FCM) algorithm [9], possibilistic c-means (PCM) clustering
algorithm [10] or hybrid approaches that combine FCM and
PCM algorithms [11], [12] do not optimize clustering so
as to maximize the throughput. The proposed soft or fuzzy
clustering algorithm in this paper clusters the system with the
ultimate aim of maximizing throughput.

In this paper, a novel soft clustering algorithm is proposed
for a fog Radio Access Network (F-RAN) based on a well-
known Water-Filling algorithm, but with a very different appli-
cation perspective. Heretofore, the general aim in Water-Filling
algorithm is to find the optimum transmission power levels
for multi-user communication [13]-[16]. This paper employs
the Water-Filling algorithm for clustering to determine the
probability of connection between SCs and many fog nodes
so that one SC can be connected to many fog nodes with
a probability between 0 and 1, whose sum is equal to 1.
The overall contributions of this paper when it comes to
the adaptation of fog networks and machine learning to the
HetNets are summarized as below:

• Dynamically determining, or selecting, the fog nodes
among many SCs according to the channel conditions.
To illustrate, a new set of fog nodes are determined for
quasi-static fading channel for each channel change. Note
that fog nodes are upgraded from SCs, likely via a SW
upgrade.

• Cluster the SCs around fog nodes to maximize the data
rate.

• Adapt the well-known Water-Filling algorithm in commu-
nication theory to machine learning to develop a novel
soft clustering algorithm. To the best of the authors
knowledge, this is the first study that proposes to use

1This idea is briefly mentioned in [8].
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Water-Filling to cluster many data points around cluster-
heads.

This paper is organized as follows. The system model and
problem formulation are given in Section II, and a novel clus-
tering algorithm is discussed in Section III, whose numerical
results are presented in Section IV. The complexity of the
proposed clustering algorithm is analyzed in Section V. The
paper ends with the concluding remarks in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The primary advantage of increasing throughput with the
HetNet architecture can be corrupted due to interference
among SCs. Fog nodes can control SCs and alleviate interfer-
ence in addition to providing them cloud-like functions such as
communication, computation and storage services. Therefore,
upgrading some SCs to fog nodes ensures coordination and
decreases the interference level. There will be many fog nodes
that will be upgraded from SCs within the area of interest,
whose numbers are given as a priori information. How to
determine the number of fog nodes and the optimum number
are other problems [17], and are out of scope for this paper.

In the considered network model shown in Fig. 1, fog nodes
are able to serve many SCs and one SC might access many
fog units. In this model, the high power node (HPN) provides
ubiquitous services, and SCs are stationary, i.e., they have
fixed locations, and their locations are known. The locations
of SCs that will be upgraded to fog nodes are found in this
setting according to the quality of the channels. Accordingly,
the location of fog nodes changes from one channel realization
to another assuming that the channels among SCs are a quasi-
static fading channel that changes slowly.

Fig. 1. A generic cellular network model with many SCs and fog nodes.

The major challenges for this network model is to dy-
namically determine the locations of fog nodes that will be
upgraded from SCs for a quasi-static fading channel and
specify which SCs can be controlled by or take services from
which fogs. To illustrate, whether SCs should be connected to
only one fog node or more than one fog node, the decision
criterion to make a connection with fog nodes are among the
aforementioned questions that this paper will address. To give

clear-cut answers for these questions, a grouping or clustering
algorithm has to be specified based on a similarity measure.
Note that clustering the SCs around the fog units not only
specifies the connection among them but also enables the SCs
to leverage the limited resources more efficiently. Furthermore,
this approach contributes to the virtualization of the network,
which is one of the most desired feature in next generation
5G wireless networks.

The most important point in grouping or clustering is
to determine a similarity criterion that reflects the strength
of the relationship between two data points so that similar
data is grouped together within a cluster. In this paper, the
similarity measure is the quality of the wireless channels.
A widely used similarity criterion based on the distance is
where SCs are connected to the closest fog points, which is
known as a Voronoi tessellation based on K-means clustering
approach, cannot be a reasonable approach when it comes to
addressing the high data rate and low latency requirements of
5G networks. It is clear that such an approach can give very
poor performance when the closest distances have the worst
fading channels, because this degrades the data rate and thus
the transmission delay.

The clustering problem is formulated by considering the ge-
ographical locations of SCs and fog nodes as cluster members
and cluster-heads, which are the leaders of each cluster, re-
spectively. More specifically, suppose that there are N SCs and
K fog nodes that represent cluster-heads in a 2-dimensional
Euclidean space. Accordingly, a group of SCs can transmit
to a group of fog nodes at the same time, and a successive
interference cancellation (SIC) receiver may be utilized in
the fog units to separate the signals coming from different
SCs. Of course, this is an ideal case, so that interference is
perfectly mitigated. Clusters are formed for this scenario to
maximize the data rate or throughput while maintaining stable
transmission queues based on a novel fuzzy or soft clustering
algorithm whose details are given in the subsequent section.

III. A NOVEL FUZZY CLUSTERING ALGORITHM

Assume that we start with a total of N + K SCs and
K of them will be upgraded to fog nodes to control and
provide services to the other N SCs. Note that the val-
ues of N and K are given as a priori information. Let
X = {x1, x2, · · · , xN} ∈ R2 be the locations of SCs, and
E = {e1, e2, · · · , eK} ∈ R2 represent the fog locations. That
is, X and E denote the members of clusters and the centers
of clusters, respectively. The general objective function that is
to be optimized for a clustering algorithm can be stated as

J =

N∑
n=1

K∑
k=1

F (γnkf(xn, ek)) (1)

where γnk is the degree of membership that quantifies the
similarity criterion so that γnk ∈ {0, 1} for hard clustering
and γnk ∈ [0, 1] for fuzzy or soft clustering. F (γnkf(xn, ek))
is the general function that determines the clusters by linearly
multiplying γnk with f(xn, ek), which measures the similarity



of any data point xn for n = 1, 2, · · · , N with a cluster-head
ek for k = 1, 2, · · · ,K. These functions can be expressed for
the conventional Euclidean distance based clustering as

f(xn, ek) = ||xn − ek||2 (2)

and
F (γnkf(xn, ek)) = γnk||xn − ek||2. (3)

However, minimizing the distance does not necessarily min-
imize the total latency and the data rate, which is a more
dominant factor in determination of latency with respect to
propagation distance.

In our proposed fuzzy clustering algorithm, the clusters are
formed in an attempt to maximize the data rate while ensuring
the stability of queues in the SCs, and thus f(.) and F (.) are
determined accordingly. In this direction, f(.) represents the
channel power as follows

f(xn, ek) = hnkh
∗
nk (4)

where hnk is the channel between xn and ek resulting in

F (γnkf(xn, ek)) = F (γnkhnkh
∗
nk). (5)

Since one SC can connect to k number of fog nodes, (5)
is defined as the weighted capacity between one SC and its
connected fog node

F (γnkf(xn, ek)) = wnk

k∑
j=1

log(1 + γnjhnjh
∗
nj) (6)

where wnk’s are the weights determined by the fog or edge
units to satisfy the stability of queues in the SCs by adjusting
the service rate between each SC and fog, and the second
term in the right-hand side provides the sum of communication
rates when one SC is connected to k fog nodes for normalized
bandwidth and transmission power. Fog nodes must monitor
the queuing buffers of the SCs while giving services; otherwise
unstable queues may occur leading to infinite latency. In fact,
this is the reason of involving wnk’s in the objective function
(12), which can guarantee the stability of queues in the SCs.
Let qnt be the queue size of the nth SC that has an arrival rate
of αn

t and a service rate of un
t . The queue dynamics can then

be written as

qnt+1 = max(qnt − un
t , 0) + αn

t . (7)

A queue becomes strongly stable if

lim
T→∞

sup
1

T

T∑
t=1

E(qnt ) < ∞. (8)

This factor is taken into account in the optimization formula-
tion so that wnk’s are adjusted regarding un

t to ensure stability.
The degree of membership γnk is set up based on

a posteriori probability p(ek|xn) that specifies the connection
of nth SC with the kth fog unit such that γnk = p(ek|xn) and

K∑
k=1

p(ek|xn) = 1. (9)

The connection of N number of SCs with K number of fog
nodes produces a N×K clustering matrix Γ whose entries are
γnk for n = 1, 2, · · · , N and k = 1, 2, · · · ,K. The value of
each γnk lies in between 0 and 1, and the sum value of each
row in Γ is equal to 1. To optimize the values of γnk, the
following objective function based upon (6) is utilized given
by

Jn =
K∑

k=1

wnk

k∑
j=1

log(1 + γnjhnjh
∗
nj) (10)

which can be written for N SCs as

J =
N∑

n=1

Jn. (11)

Since SCs are independently located within the area of
interest and interference is assumed to be mitigated with a
SIC receiver, maximizing (10) will also maximize (11) and
the optimization problem can then be formulated considering
the fact that (8) can be satisfied with a proper un

t as

max

K∑
k=1

wnk

k∑
j=1

log(1 + γnjhnjh
∗
nj) (12)

subject to
∀wnk ≥ 0, k = 1, 2, · · · ,K (13)

wnk = cku
n
t , k = 1, 2, · · · ,K (14)

ck ≥ 0, k = 1, 2, · · · ,K (15)

∀γnk ≥ 0, k = 1, 2, · · · ,K (16)

K∑
k=1

γnk = 1. (17)

The Lagrangian function can then be given by (18) whose
equality to satisfy the Karush-Kuhn-Tucker (KKT) condition
produces

∂L(γn, ρ, r, z, v, µ)

∂γnk
=

∂Jn
∂γnk

+ vk − µ = 0. (19)

Considering the vk as a slack variable [13], (19) becomes

K∑
j=k

wnj |hnk|2

1 +
∑j

i=1 γni|hni|2
= µ. (20)

To further simplify (20), let

σkj =
1 +

∑j
i=1,k ̸=j γni|hni|2

|hnk|2
(21)

that yields
K∑

j=k

wnj

σkj + γnk
= µ. (22)



L(γn, ρ, r, z, v, µ) = Jn +
∑
k

ρkwnk +
∑
k

rk(wnk − cku
n
t ) +

∑
k

zkck +
∑
k

vkγnk − µ(
∑
k

γnk − 1) (18)

It is analytically intractable, i.e., there is no closed-form
expression, to solve (22), and a variant of the Water-Filling
algorithm [14], hereafter labeled as edge location assisted
Water-Filling (ELA-WF), is employed to find the exact values
of γnk. Accordingly, the water level µ∗ satisfying (17) is first
found then γnk for k = 1, 2, · · · ,K is determined according
to µ∗. Note that solving (22) for all n = 1, 2, · · · , N gives
the N × K clustering matrix Γ. The index of each row for
n = 1, 2, · · · , N in Γ indicates one specific SC location.
Similarly, the index of each column for k = 1, 2, · · · ,K in Γ
shows the location of fog nodes. Notice that it is assumed that
all the locations of SCs are known at the beginning, which is
reasonable due to static nature of SC locations, and thus there
is a one-to-one mapping between the locations of SCs and fog
nodes, and the rows and columns of matrix Γ.

The aim of the proposed clustering algorithm is to first
determine the locations of SCs that will be upgraded to fog
nodes among many SCs placed in a given area, which are
static and whose locations are known, and then cluster the
remaining SCs around these selected fog nodes. Clustering
will occur in a probabilistic way so that each SC is connected
to all upgraded fog nodes with a certain probability, which
is found according to the quality of channel. The details of
ELA-WF are given below in Algorithm 1:

Algorithm-1: Edge Location Assisted Water-Filling
(ELA-WF)

1) Initialize K and N to the number of fog nodes and SCs
respectively given as a priori information.

2) Set N = N +K and K = N .
3) Set the entries of a (N +K)× (N +K) channel matrix

H to the channel values between all SCs and fog nodes.
Notice that all diagonal terms of H should be 0.

4) Initialize γ
(0)
nk = 0 for k = 1, 2, · · · ,K and n =

1, 2, · · · , N corresponding to each entry in H. This
yields an (N +K)× (N +K) matrix Γ = 0.

5) Iterate starting from l = 1

a) Initialize n = 1.
b) Select w(l)

nk that satisfies (14) for ∀k except k = n.
c) Find σ

(l)
kj for γ(l−1)

nk using (21) for ∀k except k = n.
d) Apply Water-Filling algorithm to find γ

(l)
nk using

(22) for ∀k except k = n.
e) Update γ

(l)
nk = 1/K ∗ γ

(l)
nk + (1 − 1/K) ∗ γ

(l−1)
nk

for ∀k except k = n to ensure the convergence as
usually done in Water-Filling algorithm, see [15]
and [16].

f) Set γ(l)
nk = 0 for k = n.

g) Repeat steps b to f for n = 2, · · · , N .
h) Continue iterations until γ(l)

nk − γ
(l−1)
nk < ϵ for ∀k

and ∀n.
6) Find the expected value of γnk with respect to n for

k = 1, 2, · · · ,K as v = [E[γn1]E[γn2] · · ·E[γnK ]].
7) Reset N and K to the initial values that are given as

a priori information.
8) Determine the index of the highest K values in v. Note

that these indices give the locations of the fog nodes that
will be upgraded from SCs.

9) Remove the K rows that correspond to the indices of
the K highest values in v. This reduces the dimension
of matrix Γ to N × (N +K).

10) Remove the N columns of Γ that correspond to the
indices of the lower N locations in v, which produces
a N ×K matrix of Γ.

11) Normalize the sum of the entries of γnk to 1 in each
row for k = 1, 2, · · · ,K, which shows the connection
probability of each SC to the K number of fog nodes.

The convergence of this algorithm can be easily justified
using the results of [14]-[16] that utilizes an iterative Water-
Filling algorithm for MIMO channel and employs SIC at the
receiver. Although the proposed algorithm has a centralized
nature, this does not lead to significant computational com-
plexity increase owing to the limited number of SCs within
the area of interest. Note that each fog network covers a local
area [2], and thus there are a limited number of SCs within
the area of interest.

IV. NUMERICAL RESULTS

The proposed ELA-WF soft clustering algorithm is com-
pared to Voronoi tessellation model, which corresponds to
the connection of a SC with the fog node that has the
strongest signal for the average values of channels. First,
the comparison is made regarding data rate for normalized
bandwidth or spectral efficiency (SE) assuming that there are
4 fog nodes and 100 SCs. In the ELA-WF algorithm, each SC
will probabilistically be connected to all fog nodes depending
on the channel conditions without any distance concern. On
the other hand, Voronoi tessellation only considers the smallest
distance so that each SC will be connected to the closest fog
unit without considering the channel quality. To observe the
difference between these soft and hard clustering algorithms,
the spectral efficiencies are given in Fig. 2 in terms of signal-
to-noise ratio (SNR). There is a significant advantage of ELA-
WF algorithm compared to Voronoi tessellation model, e.g.,
more than a 2 dB advantage is observed for the spectral
efficiency of 1 bits/s/Hz.

The same experiment is repeated by increasing the number
of fog units from K = 4 to K = 8 for 100 SCs. Here, it
is worth noting that the performance of both ELA-WF and
Voronoi tessellation model decrease as depicted in Fig. 3.
For the former case, when there are more fog nodes under
the constraint of (17), the assigned power level to the best
quality channel lowers contingent upon Water-Filling, which
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Fig. 2. Spectral efficiency of the proposed algorithm compared to the Voronoi
tessellation for K = 4

decreases the spectral efficiency. The reduction for the latter
case can be understood because the more fog nodes the more
likely the SC will be connected to the poor channel, which
implies a diminishment in the spectral efficiency.
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Fig. 3. Spectral efficiency of the proposed algorithm compared to the Voronoi
tessellation in terms of spectral efficiency for K = 8

Another performance metric for the comparison of ELA-WF
algorithm with respect to the-state-of-art Voronoi tessellation is
the end-to-end latency that is composed of many components.
It is a difficult task to completely represent the end-to-end
latency while transmitting packets from an SC to the fog node
composed of transmission delay, propagation delay, queueing
delay and processing delay. Therefore, the latency characteri-
zation in this paper has been simplified and mainly focused on
the transmission and queueing delay, since ELA-WF algorithm
minimizes the transmission delay while ensuring a bounded
queueing delay. Indeed, propagation delay can be ignored,
because the fog nodes are situated close to the SCs, and the
speed of light for a few kilometers can only lead to a delay on
the order of microseconds. Moreover, processing delays can be
greatly reduced with SDN/NFV networking [18]. As a result,
transmission and queueing delays are the major sources of end-
to-end latency for future wireless networks, and thus the end-
to-end latency are presented for ELA-WF clustering algorithm,

while ignoring the propagation and processing delay. The
performance of ELA-WF clustering algorithm is compared
with the Voronoi tessellation model assuming that queueing
delay is bounded although this model does not guarantee it.

To give quantitative results about latency, some assumptions
are made so that the data arrival rates for each SC are taken
as 1 kbps, and each transmitted packet is assumed to be 1024
megabits. Moreover, there are 4 fogs and 100 SCs within the
area of interest without any loss of generality. The result is
depicted in Fig. 4 for a bandwidth of 100 MHz, which clearly
shows the superiority of the ELA-WF clustering over the
Voronoi tessellation model in terms of SNR. When the same
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Fig. 4. Latency of the proposed algorithm compared to the Voronoi tessella-
tion in terms of SNR for K = 4

simulation is made for K = 8, an interesting result is observed
in Fig. 5. Accordingly, the latency is not affected much for
ELA-WF as the number of fog units increases, whereas the
latency in Voronoi tessellation increases considerably. It can
be deducted that the proposed clustering not only increases
the data rate but also provides more robust latency for higher
numbers of fog units, which is likely in 5G networks
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Fig. 5. Latency of the proposed algorithm compared to the Voronoi tessella-
tion as in terms of SNR for K = 8

To further elaborate on the proposed clustering algorithm,
SNR is fixed at 5 dB without any loss of generality and the



impact of bandwidth is investigated by comparing the perfor-
mance of the ELA-WF clustering and the Voronoi tessellation
model in Fig. 6 regarding latency. As can be seen, ELA-WF
clustering has a significant latency advantage, especially for
low bandwidths. Furthermore, the 1 ms latency requirement in
5G can be achieved for 1 GHz bandwidth at 5dB with ELA-
WF algorithm when the processing delay is ignored, which
can be obtained for a smaller bandwidth when the SNR is
higher than 5dB.
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Fig. 6. Latency of the proposed algorithm compared to the Voronoi tessella-
tion in terms of bandwidth for K = 4

V. COMPLEXITY ANALYSIS

The proposed ELA-WF clustering algorithm is composed
of many stages from initialization to finding relevant param-
eters for intermediate steps and applying the Water-Filling
algorithm, etc. A step-by-step complexity analysis of ELA-
WF is given in this Section. Accordingly, the complexity of
steps (1)− (4) in the proposed ELA-WF algorithm is equal to
O(1), because the initialization and settings can be performed
independent of the number nodes. On the other hand, step
(5) requires some computation that is scaled with N bringing
O(N) complexity due to steps (5b), (5c), (5e). In addition,
Water-Filling based on the binary search such as bisection
algorithm in step (5d) results in O(log(N)). Repeating all
these steps for all N in (5g) finally produces a complexity
of O(N2). The complexity of remaining steps from (6) to
(11) is less than O(N2), and hence the overall complexity of
ELA-WF becomes O(N2).

In case of the complexity analysis of K-means clustering,
2 major steps are in concern. In the first step, the points are
clustered for fixed cluster-heads that brings a complexity of
O(N). In the second step, the cluster-heads are optimized
according to the given points that results in a complexity of
O(N) for a general dissimilarity measure. Hence, the overall
complexity becomes O(N2) [4]. Notice that this complexity
is the same with the proposed ELA-WF soft clustering.

VI. CONCLUSIONS

An important problem is addressed in this paper, specifying
the connection of SCs with many possible fog nodes by

a novel clustering algorithm, which aims to maximize the
throughput by increasing the total communication rate based
on a Water-Filling algorithm, while ensuring stable queueing
delays. The comparison of ELA-WF with the state-of-the-
art Voronoi tessellation model, which does not guarantee a
stable queueing delay, clearly demonstrates the superiority
of the proposed ELA-WF clustering algorithm in terms of
substantially increasing the throughput, or spectral efficiency
in parallel with reducing latency. Indeed, the advantage of the
proposed clustering algorithm grows over the classically used
model in terms of the spectral efficiency and latency when
the number of fog nodes are increased. This result is quite
important and useful in the design of next generation wireless
networks that will have fog or edge computing units.
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