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Abstract

Data-driven network design suggests that sub-
stantial technology advances of 5G and 6G net-
works will be enabled with enhanced automation, 
intelligence, and user-experience-focused capa-
bilities. Network operators need to upgrade the 
standard network models by applying machine 
learning (ML) to address the complexities of 
next-generation network deployments. This arti-
cle explores the role of ML and its interplay with 
wireless communications networks to develop the 
next-generation network architecture. A use case 
scenario for self-configuration of radio-access-net-
work-based notification areas (RNAs) for effective 
resource management is analyzed to exemplify 
the proposed architecture where a paging load 
reduction of 64 percent is observed in the result-
ing RNA clusters. A conceptual framework for 
RNA configuration and management enabling a 
broader perspective toward an ML-driven hybrid 
self-organizing network is discussed to improve 
the signaling load to attain reduced latency and 
improved network capacity. 

Introduction
The transition into the digital society gives rise to 
a diverse range of applications and services that 
demand a radically new communication network 
architectural design for accommodating artificial 
intelligence (AI) into 5G and 6G technologies. 
As 5G and beyond networks get deployed, there 
is a need to extend the scope of network func-
tionalities by integrating new capabilities such as 
self-learning via machine learning (ML). ML can 
leverage the data generated across the network 
and enable intelligent self-learning decision-mak-
ing mechanisms to manage network complexities 
and improve network performance and efficiency. 
Network operators need to disrupt the conven-
tional and traditional models used in the previous 
generations and develop an ML-driven network 
architecture to enhance network functionalities 
and enable new networking services and applica-
tions that can be executed in a predictive manner 
to successfully deploy the next-generation net-
work. Standards organizations such as 3rd Gen-
eration Partnership Project (3GPP) have started 
working toward developing standardization sup-
port for ML-enabled use cases. ML-based frame-
works would assist network operators to reduce 
the complexities in the network and improve user 

experience by studying and analyzing the network 
data collected and autonomously looking for pat-
terns that can yield further insights.

Network operators are not going to just flip a 
switch to turn off the 4G network and deploy the 
5G and beyond network, but will rather need to 
ensure a speedy but agile 5G rollout by consid-
ering the customer impact during network migra-
tion, the capital and operational expenditures, 
and the business opportunities that can be devel-
oped for enhanced mobile broadband, massive 
machine type communications, and ultra-reliable 
low-latency communications. 

ML is expected to become a powerful tech-
nique of network association for substantially 
improving the network performance by accurate-
ly learning the near-real-time physical operating 
scenario, and the motivation and benefits behind 
using ML algorithms for future networks were 
further elaborated in [1]. The authors in [2] over-
viewed some of the key factors for successful AI 
deployment and integration in future networks. A 
four-layered architectural approach to induce the 
AI-enabled functions for intelligent 6G networks 
was described in [3]. A comprehensive survey on 
the application of AI in wireless networks from the 
data life cycle perspective was presented in [4].

 The state-of-the-art literature has investigated 
the benefits, applications, and design challenges 
in applying ML to future networks, but an ML-driv-
en network architecture remains to be well 
defined and to materialize. Network operators 
would resonate with an architectural view that is 
built on the present network models for 5G and 
beyond systems and tailor it with upcoming 3GPP 
and International Telecommunication Union — 
Telecommunication Standards Sector (ITU-T) 
standards. In this article, a systematic approach 
is taken toward developing the foundation for 
ML-driven next-generation network architecture
starting with three viewpoints, including the exam-
ination of a computing-driven network infrastruc-
ture, understanding the role of networking for
ML, and analyzing the role of ML in network
architecture, subsequently leading to an appropri-
ate fusion of ML and network architecture. It also
refers to 3GPP and ITU-T standards and state-of-
the-art literature to develop a unified layout for
ML-driven network architecture.

This article explores the role of ML and its
interplay with wireless communications networks 
such that appropriate network architecture can be 
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developed to facilitate where and how such ML 
functionalities shall be located inside the network. 
New data flow paths, networking/computing enti-
ties, and interfaces are introduced to facilitate 
more efficient networking functionalities beyond 
the existing concepts. An illustrative scenario for 
ML-driven network architecture is demonstrated. 
Future directions are discussed. Finally, conclu-
sions are drawn.

ML-Driven Network Architecture 
for 5G and Beyond Systems

Unlike existing static optimization methods, 
ML-based methods can proactively learn and 
dynamically reconfigure network functionalities 
by extracting relevant features and applying that 
knowledge or model for network optimization. 
Network operators capture an abundance of data 
about their subscribers, and ML can help exploit 
and sift that data in a variety of ways to improve 
customer experience. In order to get the most 
value from ML, an appropriate foundation of 
ML-driven next-generation architecture is critical so 
that network operators can deploy network func-
tionalities and algorithms that can scale resources 
as per customer demand within acceptable levels 
of capital and operational expenditures. 

ML-based solutions should comply with ser-
vice level agreements, function stably at operating 
frequencies within the allotted spectrum range 
available to the network operator, allow interop-
erability supporting multiple vendors’ equipment, 
and be sustained in a dynamically changing net-
work environment. Therefore, it is important to 
develop a certain degree of standardization effec-
tively facilitating ML-driven network deployment 
and management. Figure 1 envisages a new net-
work architecture for ML in 5G and beyond net-
works based on three viewpoints that include the 
examination of a computing-driven network infra-
structure, understanding the role of networking 
for ML, and analyzing the role of ML in network 
architecture, subsequently leading to an appropri-
ate fusion of ML and network architecture.

Computing-Driven Network Infrastructure
It has become pivotal to examine the comput-
ing environment for 5G and beyond networks to 
explore the interplay between networking and 
computing in which ML can assist future network-
ing, and networking can enable new scenarios 
using ML. The goal of installing ML in networking 
architecture is to execute networking functional-
ities or networked services in a predictive manner. 
ML relies on high-performance computing that can 
sit on cloud, edge (or fog), and agents, all requiring 
networking infrastructure to enable efficient ML.

In cloud computing, the data center, database, 
and so on are externally connected to the core net-
work (CN). However, such big user data or control 
data can be deeply learned and analyzed and inter-
nally connected to CN in 5G and beyond network 
architecture. 3GPP has defined the network data 
analytics function (NWDAF) [5], which can provide 
analytics to 5GC network functions (NFs) and oper-
ations, administration, and maintenance (OAM). 
NWDAF comprises analytics logical function (AnLF) 
and model training logical function (MTLF). AnLF 
can perform inference, derive analytics information, 

and expose analytics service. Analytics information 
are either statistical information of past events or 
predictive information, and can include informa-
tion such as slice and NF load level information, 
observed service experience information, network 
performance information, user equipment (UE) 
mobility information, UE communication informa-
tion, expected as well as abnormal UE behavioral 
information, user data congestion information, and 
quality of service (QoS) sustainability. MTLF trains 
ML models and exposes new training services (e.g., 
providing a trained model). NWDAF is also expect-
ed to support edge computing applications by pro-
viding user plane performance analytics in the form 
of statistics or predictions to a service consumer. 
Edge computing enables processing of computa-
tion-intensive and delay-sensitive services and appli-
cations at the service provider’s network border by 
moving the computing resource and data storage 
from CN to the edge of the network. Edge comput-
ing, from this view, will be connected to the radio 
access network (RAN) executing edge networking 
functionalities. Edge AI and analytics combines AI 
with edge computing. It enables processing of ML 
algorithms locally within the RAN network without 
needing to connect to the cloud. State-of-the-art 
edge computing that may consist of many core par-
allel processors can support ML for data analysis 
and AI. In agent computing, each smart agent typ-
ically has impressive computing power to execute 
complex ML and AI functionalities.

Role of Networking for ML
The purpose of ML is not just for (big) data anal-
ysis. ML facilitates AI applications that commonly 
require networking to achieve safety, reliability, 
and overall efficiency. Agents and sensors that 
support smart applications generate big data, and 
ML can take advantage of inference from big 
data assisted networking functionalities. For many 
cases of ML in smart agents, correctly received 
messages of longer delay can be practically use-
less. For example, for an autonomous driving vehi-
cle, a message from another agent to indicate a 
deer jumping into the road can be useless (as not 
enough time to act) if the end-to-end networking 
latency is several hundreds of milliseconds. 

FIGURE 1. Interplay between 5G (and 4G) networking and computing, in which ML can assist future networking, and 
networking can enable new scenarios using ML/AI. AMF: access and mobility management function; UPF: user plane 
function; SMF: session management function; PCF: policy control function; UDM: unified data management; AUSF: 
authentication server function; NSSF: network slice selection function;NWDAF: network data analytics function.
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Network infrastructure for ML applications 
would help achieve scalability and time-bounded 
performance. It is expected that future network 
architecture shall support or enable ML operating 
inside smart agents, which involves massive opera-
tion of autonomous vehicles, robots, smart manu-
facturing, tele-medicine, and more. Multiple robots 
or agents of AI are well known to collectively work 
toward human benefits, which form a multi-agent 
system (MAS). If a MAS has (wireless) networking 
capability, it is known as networked MAS. Although 
MAS has been widely studied, MAS with network-
ing capability has been little covered. 

Role of ML in Network Architecture
It is commonly recognized that applying ML can 
enhance network functionalities, and the applica-
tion scenarios of ML in the network can be cate-
gorized into online and offline ML computing. In 
online ML, the ML functionalities are embedded 
into networking operating algorithms or proto-
cols, and thus must be implemented into the cor-
responding network entities such as NWDAF. If 
the ML functionality is executed and then used to 
assist network functionalities, usually with a larg-
er computational delay, it is known as offline ML 
computing, which can be executed in a co-locat-
ed computing facility properly connected to the 
corresponding network entities. Offline ML also 
can be computed in another far-away computing 
facility and then apply transfer learning to the tar-
get network entities. Ongoing ITU-T studies have 
defined the concepts of ML sandbox and ML pipe-
line toward developing a conceptual architectural 
framework for ML in future networks [6]. An ML 
sandbox is an environment in which ML models 
can be trained, tested, and evaluated before their 
applications to operating networks. An ML pipeline 
is a set of logical nodes, each with specific func-
tionalities, that can be combined to form an ML 
application in a telecommunication network.

Given the fact that ML can be executed in the 
agents (i.e., UE), edge (i.e., RAN), and cloud (i.e., 
CN or beyond gateway), ML can play different 
roles in executing a specific networking function-
ality following which ML-based networking can be 
categorized as ML-aware, ML-aided, and ML-en-
abled. ML-aware networking is where networking 
entities know the availability of ML functionalities, 
and it is optional to take advantage of the ML capa-
bility. In ML-aided networking, network function-
alities are mandatorily enhanced by adopting ML 

technology, which can be offline ML or online ML. 
In ML-enabled networking, network functionalities 
must rely on ML, which is online ML in principle.

The proposed ML-driven network framework 
utilizes user data generated across the network 
and processes it using ML, enabling a user-centric 
approach such that network strategies and solu-
tions can be tailored per user needs and feedback. 
This may include data extraction of the connectivi-
ty and mobility status of users, studying user behav-
ioral patterns, profiling end user’s perception of 
QoS, and utilizing end user’s input and feedback 
for optimization. To facilitate ML-based networking 
functionalities, new traffic will be potentially includ-
ed such as sensor and measurement data, con-
text information/context-aware data, and planning 
and policy for ML functionalities. Sensor and mea-
surement data will be collected for ML training. 
Context information data can extract location infor-
mation, user experience (i.e., latency, jitter, packet 
drops, etc.), and private references (e.g., map or 
topology). Planning and policy for ML functional-
ities can comprise agent’s policy and/or rewards, 
extracted features or learning models, and more, 
while the agent may be a network entity or a smart 
UE (e.g., a robot). The traditional control plane and 
data plane may no longer be adequate in data han-
dling and transmission and will need a new ML 
plane to manage ML-based data traffic.

The realization of this new network architec-
ture will help achieve a certain degree of stan-
dardization effectively facilitating ML-driven 5G 
and beyond systems. An application scenario is 
discussed in the next section along the lines of 
this new architecture as an illustration. 

An Illustration of ML-Driven 
Network Architecture

Mobility management remains a key compo-
nent of existing as well as next-generation wire-
less communications networks, and an ML-driven 
architecture can effectively maneuver signaling 
and data resources via mobility predictions. The 
network function design of ultra-low-latency 
mobile networks proposed in [7] indicates antic-
ipatory mobility management enabled by online 
ML. The authors in [8] illustrated an NWDAF-
based architecture for mobility management in 
the CN by proposing an ML-assisted CN-based 
paging method. The remainder of this article 
focuses on developing an adaptive mechanism 
for RAN-based paging in an ML-driven network 
architecture. 

The logical/functional split between CN and 
RAN led to the introduction of RAN-based noti-
fication areas (RNAs). An RNA cluster may con-
stitute cells covered by one or more 5G network 
nodes (base stations) enabling RAN-based pag-
ing. This will allow network operators to effective-
ly manage network resources as it significantly 
reduces latency by lowering CN/RAN signaling 
by more than 85 percent and regulates UE power 
dissemination especially suitable for bursty con-
nectivity and massive access [9]. 

Figure 2 is an illustration of using offline ML for 
RNA configuration and management to compre-
hend the new realization of ML-driven network 
architecture. ML-driven data flows, interfaces, and 
entities are in red. Measurement and context data 

It is commonly recognized 
that applying ML can enhance 
network functionalities, and 
the application scenarios of 

ML in the network can be 
categorized into online and 

offline ML computing.

FIGURE 2. An illustration of ML-driven network architecture for RNA config-
uration and management. AIV: air interface variant.
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are collected for ML training, stored in the data 
storage, processed in the ML processing unit, and 
transferred to the RNA configuration and man-
agement unit for RNA cluster formation and opti-
mization. The following subsections include an 
overview of radio resource control (RRC) state 
handling and transitions, key RNA configuration 
factors, and a case study to demonstrate and eval-
uate the proposed RNA configuration technique, 
and provide future recommendations to further 
enhance the technique to attain a more robust 
and reliable approach.

RRC State Handling and Transitions
A typical LTE network has two RRC states, RRC 
connected and RRC idle. The RRC connected 
mode is activated during data transfer, and UE 
enters RRC idle mode when there is no data 
to be transmitted or received. A 5G network is 
expected to encounter a large amount of random 
aperiodic and keep-alive traffic generated by a 
plethora of autonomous applications and services 
supported by 5G that will cause several RRC 
state transitions, adversely affecting signaling and 
paging load, latency, power consumption, and 
capacity of the network. A new RRC state, RRC 
inactive, has been introduced in 3GPP standards 
to address these issues. 

A UE is either in RRC connected state or in 
RRC inactive state when an RRC connection has 
been established, but if this is not the case (i.e., no 
RRC connection is established), the UE is in RRC 
idle state [10]. Transitions from RRC idle to RRC 
connected are expected to occur mainly when a 
UE first attaches to the network, while transitions 
from RRC inactive to RRC connected are expect-
ed to occur frequently and are optimized to be 
fast and lightweight in terms of signaling achieved 
by keeping the CN-RAN connection alive during 
inactivity periods allowing the UE to move around 
within a pre-configured area (the RNA) without 
notifying the network [9].

RNA Configuration Factors
One of the most important factors while config-
uring RNA clusters is analyzing the user activity 
by means of UE-gNB connections as that has a 
direct impact on signaling load. The RF con-
ditions will help gauge the boundaries of RNA 
clusters; hence, it is important to incorporate 
reference signal received power (RSRP) and 
signal-to-noise-plus-interference ratio (SINR) 
conditions of the user connections. The RSRP 
measurements help analyze path loss, and SINR 
measurements can be used to ensure good clus-
ter throughput. Another aspect that is critical in 
RNA cluster formation is the paging load. In LTE, 
paging is a CN function that is envisaged to be 
moved into the RAN in 5G by taking advantage 
of the RRC inactive state and RNA, thus allowing 
RAN-controlled paging initiation procedures [9]. 
A RAN-initiated paging vs. a CN-initiated paging 
procedure for a 5G network can be described as 
shown in Fig. 3 [11]. For M cells and N gNBs per 
RNA, the paging load (in terms of the number of 
messages) in the RAN-initiated paging is equal to 
the sum of M messages over radio and (N – 1) 
messages over Xn, whereas the paging load in 
the CN-initiated paging is equal to the sum of M 
messages over radio, (N + 3) messages over N2, 

and 3 messages over N4 and N11, where Xn is 
the interface between gNB-gNB, N2 is the inter-
face between RAN and AMF, N4 is the interface 
between SMF and UPF, and N11 is the interface 
between AMF and SMF [11]. 

Performance Analysis and Evaluation
This section performs a case study to demonstrate 
and evaluate the performance, feasibility, and 
potential benefits of the proposed RNA clustering 
mechanism.

For verification, a simulated network consisting 
of several users being served by multiple network 
nodes representing 4G/5G base stations is config-
ured using the ns-3 simulator. The maximum trans-
mission power of network nodes that are located 
outdoors is set up to 40 W and is set up to 20 W 
for indoor nodes. The channel bandwidth con-
sidered is 20 MHz, and the testing frequencies 
include 700 MHz and 2.6 GHz. The propor-
tional fair algorithm is applied for scheduling. 
The radio propagation model used is Cost231, 
which is designed to cover an elaborated range 
of frequencies to predict path loss for outdoor 
scenarios in urban areas. The indoor scenarios 
are mimicked by creating a building with user-de-
fined dimensions and attributes and applying a 
hybrid buildings propagation loss model that is a 
combination of several well-known path loss mod-
els. The users are allocated in random positions, 
and the mobility model assigned is 2D random 

FIGURE 3. RAN-initiated paging procedure (purple and black) vs. CN-initiated paging procedure (blue and black) for 
a 5G network.
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FIGURE 4. Performance evaluation for the selection of kc.
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walk mobility where each user moves with cer-
tain speed and direction chosen at random until 
a certain amount of time, after which the users 
randomly change their positions and directions. 
The A3 RSRP algorithm is implemented to trigger 
handovers. An A3 event is triggered when the 
UE perceives that a neighbor cell’s RSRP is better 
than the serving cell’s RSRP by an offset. RSRP 
and SINR statistics are collected during the entire 
simulation run for every user and its serving net-
work nodes. 

During data preprocessing, thresholds for 
RSRP and SINR conditions are set to consid-
er measurements that are within an acceptable 
range of radio conditions so that RNA clusters 
are configured to meet the minimum allowable 
range of signal strength and throughput require-
ments and diminish the ping- pong effect at clus-
ter boundaries. The processed data defines the 
relationship between every network node and 
user, and the size of the dataset is defined by the 
number of network nodes and users. 

ML processing based on uncertainty or incom-
plete information can be common in wireless net-
works as the network data is subjected to various 
scenarios that may be associated with hetero-
geneous small- and large-scale structures relying 
on a diverse range of parameters in a constantly 
changing RF environment. The k-means algorithm, 
an unsupervised ML algorithm, performs cluster 
analysis that can help identify patterns and derive 
correlations between data samples to make the 
best possible sense of the data and make predic-

tions even when labeled data samples are not 
available to create appropriate groups of network 
nodes per RNA. 

The simulated network data collected is not 
explicitly labeled. The k-means algorithm is imple-
mented in Python to operate on this dataset. It 
has excellent fine-tuning capabilities and can be 
effectively used as a subset of more complex 
algorithms. As the number of dimensions increas-
es, pre-clustering steps such as spectral clustering 
can be applied where necessary followed by the 
use of k-means to cluster the data in a lower-di-
mensional subspace, making it a good candidate 
for cluster analysis. The k-means clustering is com-
putationally efficient and can adapt to new sam-
ples, making it a scalable solution. 

The k-means algorithm clusters data by divid-
ing a set of samples of a dataset into k disjoint 
clusters, each described by the centroid (mean) 
of the samples in the cluster as described below. 
1. Create a dataset, or matrix, of dimensions 

defined by the number of network nodes 
and the number of users to represent the 
relationship (i.e., the connectivity status) 
between every network node and user under 
nominal conditions for a given period. (The 
matrix entries are populated over time and 
are set to zeroes and ones to show the asso-
ciation between every network node and 
user and capture the user mobility status.)

2. For an initial setting of k clusters, choose k sam-
ples from the dataset to select the initial cen-
troids (i.e., the initial cluster centers are selected 
using the k-means++ initialization method).

3. Repeat the steps below until convergence, 
which occurs when the centroids stop 
changing:

	 • For all the data samples, find the closest (in 
the sense of Euclidean distance) centroid.

	 • Create new centroids by taking the mean 
value of all samples assigned to each pre-
ceding centroid and compute the difference 
between the previous and new centroids.
The determination of the optimal number of 

clusters is performed by using silhouette analy-
sis, and the comparison between the RAN-initiat-
ed and CN-initiated paging loads. The optimum 
number of clusters in this case study are deter-
mined with an objective to maximize the paging 
load reduction, subject to the constraints of the 
silhouette scores. Silhouette analysis [12] mea-
sures the quality of clustering by studying the sep-
aration distance between the resulting clusters to 
validate the consistency within them. Silhouette 
coefficients have a range of [–1,+1] such that the 
worst value is –1 and the best value is +1. A value 
of +1 indicates that the sample is far away from 
the neighboring clusters. A value of 0 indicates 
that the sample is on or very close to the decision 
boundary between two neighboring clusters, and 
negative values indicate that those samples might 
have been assigned to the wrong cluster. The sil-
houette coefficient is calculated using the mean 
intra-cluster distance and the mean nearest-cluster 
distance for each sample.

The average silhouette score provides an evalu-
ation of clustering validity and is used to select an 
“appropriate” number of clusters. Silhouette anal-
ysis and the paging load reduction obtained after 
comparing the RAN-initiated paging over CN-initi-

FIGURE 5. The network model and the resulting RNA clusters formed with kc = 4. The arrows represent the connectiv-
ity status of the mobile UEs with the network nodes as they move around in the network.

FIGURE 6. ML-based hybrid SON framework for RNA configuration and 
management.
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ated paging were plotted, and the optimum value 
for the number of clusters (i.e., the value of kc) is 
found to be equal to 4, as depicted in Fig. 4, corre-
sponding to the highest point of intersection as the 
higher the paging load reduction and the silhouette 
score, the better are the clustering results. A paging 
load reduction of 64 percent is observed in the 
resulting RNA clusters. It gives a balanced trade-
off between maximizing the average paging load 
reduction and maximizing the average silhouette 
score. The silhouette analysis prevents the number 
of clusters from becoming arbitrarily large, and the 
paging load reduction prevents the number of clus-
ters from becoming arbitrarily low.

One limitation of the k-means algorithm is 
that it may not always succeed in optimizing the 
centroid locations globally and can get stuck at 
a local minimum. To address this, a more pow-
erful ML algorithm, spectral clustering [13, 14], 
is implemented. Instead of clustering in the orig-
inal space, the data is first mapped to a new 
space such that similarities are made more appar-
ent using Laplacian Eigenmaps [13] to place 
data instances in such a way that the similarities 
between neighboring instances are preserved and 
clustering is applied to a projection of the nor-
malized Laplacian. In the original space, a local 
neighborhood is created such that the instances 
in the same neighborhood are defined by creat-
ing an affinity matrix using the kernel radial basis 
function (RBF). The matrix value of a similar pair 
of data instances 0 and the value of a dissimilar 
pair of data instances 1. This has the effect that 
instances nearby in the original space, probably 
located within the same cluster, will be placed 
very close in the new space, whereas those that 
are some distance away, probably belonging to 
different clusters, will be placed far apart. The 
k-means clustering is then run with new data coor-
dinates in the new space. 

The k-means algorithm would work effectively 
for simple cluster formations, and spectral clus-
tering can serve as an extension to k-means and 
would be preferred for more general problems. 
The application of k-means and spectral clustering 
both provide identical resulting clusters for the 
example network model used in this case study. 
For a more complex network, it is recommend-
ed to combine these unsupervised learning algo-
rithms with deep learning. The simulated network 
model and the resulting RNA clusters formed with 
kc = 4 are depicted in Fig. 5. 

Future Research Directions
To improve network resilience and robustness, 
it is recommended that the RNA clusters should 
be monitored periodically and fine-tuned post 
initial clustering. This can be achieved by moni-
toring key performance indicators (KPIs) such as 
user throughput, traffic volume density, end-to-
end latency, reliability, availability, and retainabil-
ity. The computational capabilities and scalability 
required to effectively embed these KPIs can be 
achieved by adopting an ML-based hybrid self-or-
ganizing network (SON) framework. 

A conceptual framework to enable self-config-
uration and management of RNAs is proposed as 
depicted in Fig. 6, which is analogous to a hybrid 
SON structure [15] where the centralized man-
agement system represented by the RNA con-

trolling unit and the element management system 
represented by the anchor gNBs work together, 
in a coordinated manner, to build up a complete 
SON algorithm. The decisions on SON actions 
may be made by either the RNA controlling unit 
via centralized computing or the anchor gNBs 
via edge computing. An anchor gNB is the net-
work node that is aware of or has the list of all the 
gNBs that are a part of that RNA. It is the anchor 
gNB that maintains the CN-RAN connection and 
the UE context as the UE moves around within 
the RNA. The initial RNA clustering mechanism 
illustrated in the previous subsection is implement-
ed in the RNA configurator. 

Once initial clusters are formed, the RNA mon-
itor would monitor KPIs for each cluster. A clus-
ter-level threshold margin can be set such that it 
would trigger either an addition or removal of a 
gNB from a cluster or trigger re-initiation of RNA 
clustering depending on the tolerance limit set 
for the threshold variations. If a gNB is moved 
from one cluster to its adjacent cluster to main-
tain an acceptable level of cluster performance, 
the anchor gNBs of the clusters that underwent 
the changes would relay this information to the 
RNA monitor so that the modified clusters are 
considered for future monitoring. When the RNA 
monitor detects threshold variations exceeding 
the tolerance limit set, the RNA monitor would 
trigger the RNA configurator to re-initialize and 
form new RNA clusters.

This framework will achieve improved signal-
ing and paging load to attain reduced latency and 
improved capacity, which are two of the key require-
ments for emerging use cases where an appropriate 
configuration of RAN-based notification areas will 
play a significant role as it will have a direct impact 
on controlling the RRC state transitions. 

Conclusion
In the orchestration of the 5G and beyond era, net-
work operators need to expand their current scope 
of network deployment operations by integrating 
ML technologies. This article initiates a discussion on 
developing a certain degree of standardization effec-
tively facilitating ML-driven network deployment and 
management. A new perspective of network architec-
ture for ML in 5G and beyond networks is envisaged 
using a computing-driven infrastructure. Furthermore, 
an illustrative scenario is demonstrated based on the 
ML-driven architecture where a self-learning mech-
anism that can predictively configure RAN-based 
notification areas is proposed, demonstrated, and 
evaluated, enabling a user-centric smart RAN paging 
technique. Future research includes effective RNA 
configuration and management in an ML-based 
hybrid SON system facilitating ML-driven next-gen-
eration self-organizing 5G/6G networks that would 
help improve signaling load to attain reduced latency 
and improved network capacity.
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