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Abstract—Machine learning is expected to be a key enabler in 

5G wireless self-organizing networks (SONs) that will be 

significantly more autonomous, smarter, adaptable and user-

centric than current networks. This paper proposes a 

methodology, User Specific-Optimal Capacity Shortest Path (US-

OCSP) routing, that uses machine learning to determine the 

resource-based optimum-capacity shortest path for a user 

between source and destination.  The methodology takes into 

account two primary metrics, available capacity at network nodes 

(eNodeBs/gNodeBs) and distance, that are critical in determining 

the optimal path for an end-user. An ns-3 simulation determines 

the capacity, which is measured by the availability of resources 

[i.e., Physical Resource Blocks (PRBs)] at all possible serving 

network nodes  between the source and destination, that is 

followed by implementation of Q-learning, a reinforcement type of 

machine learning algorithm that determines the shortest path 

avoiding congested network nodes so as to achieve the required 

throughput and/or bit rate. The ability to determine the optimal-

capacity shortest path route will facilitate effective resource 

allocation that will optimize end-user satisfaction in a 5G SON 

network.  
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I. INTRODUCTION 

A central challenge for emerging 5G wireless 

communication networks, beyond the promise to deliver faster 

speeds and greater connectivity, is to optimize the ability of 

wireless network service providers to efficiently deliver the 

required user capacity over the available spectrum resources. A 

self-organizing network (SON) is recognized as central to 

capacity optimization of mobile networks [1]. Optimization of 

capacity in a SON includes mobility load balancing (MLB). 

MLB is a function where cells suffering congestion can transfer 

the load to other cells which have spare resources [2] and one 

of the promising ways to autonomously and intelligently 

manage MLB is by integrating it with machine learning (ML). 

 

This paper proposes a methodology called User Specific, 

Optimal Capacity and Shortest Path (US-OCSP) that performs 

user-specific dynamic routing to find the shortest path with 

optimal capacity given a source and destination. The 

methodology uses the percentage of allocated Physical 

Resource Blocks (PRBs) to evaluate the available capacity of 

4G/5G network nodes (eNodeBs/gNodeBs) [2] and 𝒬-learning, 

an ML reinforcement learning technique, to determine the 

shortest path that meets the capacity needs of a user in a SON 

network. The implementation of US-OCSP is demonstrated 

using an ns-3 simulator and implemented in Python.    

 

There have been various research papers with network-

centric approaches towards capacity optimization and load 

balancing. The authors in [3] proposed a load balancing strategy 

where a congested cell borrows channels from adjacent cells 

that are less loaded. A handover-based approach for load 

balancing in an LTE network is presented in [4], where a load 

balancing algorithm evaluates the load condition in a cell and 

neighboring cells and estimates the impact of changing the 

handover parameters to improve the network performance. The 

work in [5] improves capacity by making antenna tilt changes 

to reduce the blocking probability in a congested cell by shifting 

traffic to the neighboring cells.  

 

In this paper, a user-centric approach is taken that tailors the 

capacity needs of the end-user to find the shortest path with 

optimal capacity for a given source and destination. Capacity is 

measured by the availability of resources [i.e., Physical 

Resource Blocks (PRBs)] at all possible serving 

eNodeBs/gNodeBs between the source and destination. The 

machine learning algorithm determines the shortest path 

avoiding congested network nodes so as to achieve the required 

throughput and/or bit rate.  In other words, under the 

assumption that a user will be served by multiple network nodes 

while moving from its source to destination no matter what 

route it takes, the algorithm proposed will give the user optimal 

throughput by selecting a path with the least viable distance that 

goes through the network nodes that have good availability of 

resources (PRBs) to serve the user. The algorithm avoids 

selecting a path that goes through congested network nodes that 

have very high PRB utilization. So, if the user takes the 

recommended path, the user will be able to achieve an optimal 

throughput/ bit rate. The paper is organized as follows: Section 

II explains the proposed methodology, US-OCSP. The 



simulation results and observations are presented in Section III. 

The paper ends with concluding remarks in Section IV.  

II. THE METHODOLOGY 

The visual map depicted in Fig.1 is used to illustrate US-

OCSP. Given a source and a destination of a user, US-OCSP 

first determines the available capacity of all eNodeBs (eNBs) 

in terms of 4G or gNodeBs (gNBs) in terms of 5G that could 

potentially serve the user. This is done by calculating the PRB 

utilization of each eNB/gNB. PRB utilization is a performance 

measurement used for 4G/5G network functions that provide 

the total usage (in percentage) of physical resource blocks and 

is obtained as [6]: 

 

𝑀(𝑇) =  
𝑀1(𝑇)

𝑃(𝑇)
∗ 100      (1) 

 

where 𝑀(𝑇) is the percentage of PRBs used, averaged during 

time period 𝑇 with value range: 0-100%, 𝑀1(𝑇) is the count of 

all PRBs used, 𝑃(𝑇) is the total number of PRBs available 

during time period 𝑇, and 𝑇 is the time period during which the 

measurement is performed.   

 

The network scenario described in Fig.1 is simulated using 

the LTE-EPC simulation model of  the ns-3 simulator [7] that 

provides the interconnection of multiple UEs to the internet, via 

a radio access network of multiple eNBs connected to a single 

SGW/PGW node (not shown). In the simulation, 100 UEs are 

randomly placed in the network and are connected to the closest 

eNB. Areas with high user concentration are denoted by beach, 

university and shopping mall symbols in the visual map. PRB 

utilization is calculated for every eNB to evaluate its capacity. 

A threshold of 70% is set such that an eNB with PRB utilization 

above the threshold is declared to be “busy” while an eNB with 

PRB utilization below the threshold is declared to be 

“available.” 

 

 
Fig. 1 A visual map describing a network scenario used to illustrate US-OCSP. 

 

US-OCSP uses a machine learning algorithm called 𝒬-

learning, a form of reinforcement learning, to determine the 

shortest path to be taken by the end-user from its source to 

destination. Reinforcement learning addresses the question of 

how an autonomous agent that senses and acts in its 

environment can learn to choose optimal actions to achieve its 

goals and is described in Fig. 2 [8]. Fig. 2 can be explained as 

follows [8]:  

Each time the agent performs an action 𝑎 from a set of possible 

actions 𝐴 in some state 𝑠 in an environment described by a set 

of possible states 𝑆, the agent receives a reward or penalty 𝑟 

that represents an immediate value of the state-action transition 

indicating the desirability of the resulting state. This generates 

a sequence of states 𝑠𝑖, actions 𝑎𝑖, and immediate rewards 𝑟𝑖 as 

shown in Fig. 2. The task of the agent is to learn a control 

policy, 𝜋 ∶ 𝑆 → 𝐴, that would maximize the expected sum of 

rewards, with future rewards discounted exponentially by their 

delay. The discount factor is denoted by 𝛾.  

 

 

 

 
Fig. 2 Representation of a reinforcement learning system. 

 

 

The 𝒬-learning algorithm is described in Table I [8] and can 

be explained as follows [8]: 

In 𝒬-learning, learning the 𝒬 function corresponds to learning 

the optimal policy. The evaluation function the agent attempts 

to learn is 𝒬(𝑠, 𝑎) such that the value of 𝒬 is the maximum 

discounted cumulative reward that can be achieved starting 

from state 𝑠 and applying action 𝑎 as the first action. In this 

algorithm, the learner represents its hypothesis 𝒬̂ by a large 

table that consists of a separate entry for each pair of state and 

action. The table entry for (𝑠, 𝑎) stores the value for 𝒬̂(𝑠, 𝑎), 

the learner’s current hypothesis about the actual but unknown 

value 𝒬(𝑠, 𝑎). The initial values of the table are set to zero. The 

agent recurrently observes its current state 𝑠, chooses some 

action 𝑎, executes action 𝑎, then observes the resulting reward 



𝑟 = 𝑟(𝑠, 𝑎) and the new state 𝑠′ = 𝛿(𝑠, 𝑎) where 𝛿 is the state 

transition function and denotes the state resulting from applying 

action 𝑎 to state 𝑠 . It further updates the table entry for 𝒬̂(𝑠, 𝑎) 

following each such transition in accordance to the rule given 

by (2): 

 

 

𝒬̂(𝑠, 𝑎)  𝑟 +  𝛾 max 𝒬̂(𝑠′, 𝑎′) 

               𝑎′          (2) 

 

This training rule uses the agent’s current 𝒬̂ values for the new 

state 𝑠′ to refine its estimate of 𝒬̂(𝑠, 𝑎) for the previous state 𝑠. 

𝒬-learning propagates 𝒬̂ estimates one step backwards i.e. each 

time the agent moves forward from a previous state to a new 

one, 𝒬-learning propagates 𝒬̂ estimates backward from the new 

state to the old state. At the same time, the immediate reward 

received by the agent for the state-action transition is used to 

augment these propagated values of  𝒬̂. After multiple 

iterations, the information that the agent collects will propagate 

from the transitions with non-zero rewards back through the 

entire state-transition space available to the agent, resulting 

eventually in a table that consists of the 𝒬 values. Using this 

algorithm, the agent’s estimate 𝒬̂ converges in the limit to the 

actual 𝒬 function, provided the system can be modeled as a 

deterministic Markov decision process, the reward function 𝑟 is 

bounded, and actions are chosen such that every pair of state-

action is visited infinitely often. A significant aspect of 𝒬-

learning that makes it scalable is that it can be employed in an 

arbitrary environment where the agent or the learner has no 

prior knowledge of how its actions affect its environment. The 

agent is not required to be able to predict in advance the 

immediate result for every possible state-action. In other words, 

the algorithm assumes the agent does not have knowledge of 

𝛿(𝑠, 𝑎) and 𝑟(𝑠, 𝑎), and that instead of moving about in an 

internal mental model of the state space, it must move about the 

real world and observe the consequences. Hence, the algorithm 

can be applied even if there are newly added states and actions. 

 
TABLE I. 𝒬-LEARNING ALGORITHM, ASSUMING DETERMINISTIC REWARDS AND 

ACTIONS. THE DISCOUNT FACTOR 𝛾 MAY BE ANY CONSTANT SUCH THAT 0 ≤
 𝛾 < 1. 

 
For each 𝑠, 𝑎 initialize the table entry 𝒬̂(𝑠, 𝑎) to zero. 

Observe the current state 𝑠 

Do forever: 

• Select an action 𝑎 and execute it 

• Receive immediate reward 𝑟 

• Observe the new state 𝑠′ 
• Update the table entry for 𝒬̂(𝑠, 𝑎) as follows: 

 

                                   𝒬̂(𝑠, 𝑎)  𝑟 +  𝛾 max 𝒬̂(𝑠′, 𝑎′) 

                                                                  𝑎′ 
• 𝑠  𝑠′ 

 

 

                                                           
1 𝒬 is an evaluation function/utility function such that the value of 𝒬 for the 

current state and action summarizes in a single number all the information 

Using the knowledge of PRB utilization gained from the 

output of the ns-3 simulation, US-OCSP has at its core the 𝒬-

learning algorithm implemented in Python and finds the 

shortest path with optimal capacity that the user should take 

while in transit from a given source to destination. A table of 

correspondence to show the representation of network 

functions considered in US-OCSP with regards to the 𝒬-

learning parameters is given in Table II. Considering the 

network scenario described in Fig. 1, the agent (virtual user) 

will explore different paths going from the end-user’s source 

and destination using US-OCSP to find the optimal path. Every 

time the agent moves from one network node to another, it will 

receive an immediate reward for the transition whose value 

depends on whether or not there is a valid link established 

between the two network nodes and how close or far the 

network nodes are from the destination. It then computes the 𝒬̂ 

value for that transition using the 𝒬-learning algorithm and 

continues to refine the 𝒬̂ value until it virtually reaches the 

network node that serves the destination. The availability of 

network nodes is determined based on their PRB utilization 

derived from the ns-3 simulation. The optimal path corresponds 

to selecting the links or routes with maximal 𝒬 values. In other 

words, the computed 𝒬1 values will help determine which node 

to node transitions should be selected to achieve the shortest 

path with optimal capacity. 

 

 
TABLE II. TABLE OF CORRESPONDENCE SHOWING NETWORK MAPPING IN US-

OCSP WITH 𝒬-learning PARAMETERS  

 

𝓠-learning Parameters 

 

 

Network Mapping 

 

 

𝑠 

 
A state corresponds to a network 

node (eNB/gNB). 

 

 

 

𝑎 

 

An action corresponds to the agent's 

virtual movement from one network 
node to another. 

 

 
 

 

𝑟(𝑠, 𝑎) 

 
A reward is an immediate/instant 

value, or score received after every 

virtual move of the agent from one 
network node to another. 

 

 

 

 

𝒬(𝑠, 𝑎) 

 

A 𝒬 value is computed and refined 

recursively using the 𝒬 -learning 

algorithm until the agent virtually 

reaches the network node that serves 
the destination. 

 

 

needed to determine the discounted cumulative reward that will be gained in 

the future if that state-action pair is selected [8]. 



III. SIMULATION RESULTS AND OBSERVATIONS 

Table III provides the simulation parameters used to 

implement the network scenario described in Section III using 

ns-3.  

 
TABLE III. SIMULATION SET UP PARAMETERS 

 

Parameter 

 

 

Value 

 

Number of UEs 

 

 

100 

 
Number of eNBs 

 

 
10 

 
eNB Bandwidth 

 

 
20 MHz (100 PRBs) 

 

Scheduler 
 

 

Token Bank Fair Queue Scheduler 
(TBFQ)2 
 

 
Traffic Type 

 

 
Constant Bit Rate (CBR) 

 

 

The output of the ns-3 simulation gives the modulation 

coding scheme used and the transport block size for every UE-

eNB pair per unit time. The output is further used to find the 

PRB utilization by referring to 3GPP standards [9] and 

implementing equation (1). If the PRB utilization of an eNB 

was above 70%, it was declared as “busy” and if the PRB 

utilization of an eNB was below 70%, it was declared as 

“available” in terms of capacity. In accordance to this, eNBs 4, 

5 and 6 from Fig. 1 were declared to be “busy” eNBs whereas 

eNBs 0, 1, 2, 3, 7, 8 and 9 were declared to be “available.”  The 

𝒬-learning algorithm is then implemented in Python for 

determining the shortest path between the end-user’s source and 

destination. When distance is the only criteria used to determine 

the path that the end-user should take, the recommended path 

given by the algorithm goes via eNBs denoted by nodes 0, 5, 8 

and 9. This path is the shortest path that the end-user can take 

to reach to the destination, but is not the most efficient path as 

it does not verify if all the serving eNBs on this path have 

enough capacity available to serve the end-user. In order to find 

the most efficient path, the status of all the eNBs based on their 

PRB utilization derived from the ns-3 simulation is given as an 

input to the 𝒬-learning algorithm. With this knowledge, the 𝒬-

learning algorithm takes into account not only distance but also 

available nodal capacity (i.e., eNB or gNB availability of PRBs) 

while determining the most efficient path the end-user should 

take given a source and a destination. Subsequently, the most 

efficient path suggested by US-OCSP goes via eNBs denoted 

by nodes 0, 1, 2, 8, and 9 as shown in Fig. 3. Thus, US-OCSP 

                                                           
2 TBFQ, a channel-aware/QoS-aware scheduler derived from the leaky-bucket 

mechanism, guarantees the fairness by utilizing a shared token bank and can be 

explained as follows [7]: TBFQ maintains a shared token bank so as to balance 
the traffic between different flows. The user who contributes more on token 

bank has a higher priority to borrow tokens while the user who borrows more 

not only avoids all other possible paths that may be longer and 

more time-consuming, but it also avoids selecting paths that 

may be served by eNBs that due to congestion cannot meet the 

capacity (throughput and/or bit rate) needs of the end-user.  

 

 

 
Fig. 3 A graphical representation of the  𝒬-learning curve converging towards 

the optimal solution. 

IV. CONCLUSIONS 

This paper introduced and proposed a methodology called 

US-OCSP that gives the most efficient path to be followed by 

an end-user in terms of distance and capacity in a SON network 

using ML given its source and destination. The ML algorithm 

used in this research is 𝒬-learning, a form of reinforcement 

learning. The effectiveness of this methodology is 

demonstrated using a network scenario simulated in ns-3 

followed by the ML implementation in Python. The results 

showed that the shortest path with optimum capacity is rapidly 

determined. This methodology could help network providers to 

meet the end-user demands by finding the most efficient path 

and to optimize network resource allocation. This paper 

demonstrates the potential for implementing US-OCSP in 

future networks that will be autonomous and user-centric by 

incorporating ML in SON networks where the system can 

provide the most optimal path for end-users while moving from 

a given source to destination. 
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