
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Optimal-Capacity, Shortest Path Routing in Self-

Organizing 5G Networks using Machine Learning

Chetana V. Murudkar* and Richard D. Gitlin, Life Fellow, IEEE

Innovation in Wireless Information Networking Lab (iWINLAB)

Department of Electrical Engineering,

University of South Florida,

Tampa, Florida 33620, USA

Email: cvm1@mail.usf.edu, richgitlin@usf.edu

*Sprint Corp., USA. Email: chetana.v.murudkar@sprint.com

Abstract—Machine learning is expected to be a key enabler in

5G wireless self-organizing networks (SONs) that will be

significantly more autonomous, smarter, adaptable and user-

centric than current networks. This paper proposes a

methodology, User Specific-Optimal Capacity Shortest Path (US-

OCSP) routing, that uses machine learning to determine the

resource-based optimum-capacity shortest path for a user

between source and destination. The methodology takes into

account two primary metrics, available capacity at network nodes

(eNodeBs/gNodeBs) and distance, that are critical in determining

the optimal path for an end-user. An ns-3 simulation determines

the capacity, which is measured by the availability of resources

[i.e., Physical Resource Blocks (PRBs)] at all possible serving

network nodes between the source and destination, that is

followed by implementation of Q-learning, a reinforcement type of

machine learning algorithm that determines the shortest path

avoiding congested network nodes so as to achieve the required

throughput and/or bit rate. The ability to determine the optimal-

capacity shortest path route will facilitate effective resource

allocation that will optimize end-user satisfaction in a 5G SON

network.

Keywords – 5G, Machine learning, ns-3, Q-learning,

reinforcement learning, SON

I. INTRODUCTION

A central challenge for emerging 5G wireless

communication networks, beyond the promise to deliver faster

speeds and greater connectivity, is to optimize the ability of

wireless network service providers to efficiently deliver the

required user capacity over the available spectrum resources. A

self-organizing network (SON) is recognized as central to

capacity optimization of mobile networks [1]. Optimization of

capacity in a SON includes mobility load balancing (MLB).

MLB is a function where cells suffering congestion can transfer

the load to other cells which have spare resources [2] and one

of the promising ways to autonomously and intelligently

manage MLB is by integrating it with machine learning (ML).

This paper proposes a methodology called User Specific,

Optimal Capacity and Shortest Path (US-OCSP) that performs

user-specific dynamic routing to find the shortest path with

optimal capacity given a source and destination. The

methodology uses the percentage of allocated Physical

Resource Blocks (PRBs) to evaluate the available capacity of

4G/5G network nodes (eNodeBs/gNodeBs) [2] and 𝒬-learning,

an ML reinforcement learning technique, to determine the

shortest path that meets the capacity needs of a user in a SON

network. The implementation of US-OCSP is demonstrated

using an ns-3 simulator and implemented in Python.

There have been various research papers with network-

centric approaches towards capacity optimization and load

balancing. The authors in [3] proposed a load balancing strategy

where a congested cell borrows channels from adjacent cells

that are less loaded. A handover-based approach for load

balancing in an LTE network is presented in [4], where a load

balancing algorithm evaluates the load condition in a cell and

neighboring cells and estimates the impact of changing the

handover parameters to improve the network performance. The

work in [5] improves capacity by making antenna tilt changes

to reduce the blocking probability in a congested cell by shifting

traffic to the neighboring cells.

In this paper, a user-centric approach is taken that tailors the

capacity needs of the end-user to find the shortest path with

optimal capacity for a given source and destination. Capacity is

measured by the availability of resources [i.e., Physical

Resource Blocks (PRBs)] at all possible serving

eNodeBs/gNodeBs between the source and destination. The

machine learning algorithm determines the shortest path

avoiding congested network nodes so as to achieve the required

throughput and/or bit rate. In other words, under the

assumption that a user will be served by multiple network nodes

while moving from its source to destination no matter what

route it takes, the algorithm proposed will give the user optimal

throughput by selecting a path with the least viable distance that

goes through the network nodes that have good availability of

resources (PRBs) to serve the user. The algorithm avoids

selecting a path that goes through congested network nodes that

have very high PRB utilization. So, if the user takes the

recommended path, the user will be able to achieve an optimal

throughput/ bit rate. The paper is organized as follows: Section

II explains the proposed methodology, US-OCSP. The

simulation results and observations are presented in Section III.

The paper ends with concluding remarks in Section IV.

II. THE METHODOLOGY

The visual map depicted in Fig.1 is used to illustrate US-

OCSP. Given a source and a destination of a user, US-OCSP

first determines the available capacity of all eNodeBs (eNBs)

in terms of 4G or gNodeBs (gNBs) in terms of 5G that could

potentially serve the user. This is done by calculating the PRB

utilization of each eNB/gNB. PRB utilization is a performance

measurement used for 4G/5G network functions that provide

the total usage (in percentage) of physical resource blocks and

is obtained as [6]:

𝑀(𝑇) =
𝑀1(𝑇)

𝑃(𝑇)
∗ 100 (1)

where 𝑀(𝑇) is the percentage of PRBs used, averaged during

time period 𝑇 with value range: 0-100%, 𝑀1(𝑇) is the count of

all PRBs used, 𝑃(𝑇) is the total number of PRBs available

during time period 𝑇, and 𝑇 is the time period during which the

measurement is performed.

The network scenario described in Fig.1 is simulated using

the LTE-EPC simulation model of the ns-3 simulator [7] that

provides the interconnection of multiple UEs to the internet, via

a radio access network of multiple eNBs connected to a single

SGW/PGW node (not shown). In the simulation, 100 UEs are

randomly placed in the network and are connected to the closest

eNB. Areas with high user concentration are denoted by beach,

university and shopping mall symbols in the visual map. PRB

utilization is calculated for every eNB to evaluate its capacity.

A threshold of 70% is set such that an eNB with PRB utilization

above the threshold is declared to be “busy” while an eNB with

PRB utilization below the threshold is declared to be

“available.”

Fig. 1 A visual map describing a network scenario used to illustrate US-OCSP.

US-OCSP uses a machine learning algorithm called 𝒬-

learning, a form of reinforcement learning, to determine the

shortest path to be taken by the end-user from its source to

destination. Reinforcement learning addresses the question of

how an autonomous agent that senses and acts in its

environment can learn to choose optimal actions to achieve its

goals and is described in Fig. 2 [8]. Fig. 2 can be explained as

follows [8]:

Each time the agent performs an action 𝑎 from a set of possible

actions 𝐴 in some state 𝑠 in an environment described by a set

of possible states 𝑆, the agent receives a reward or penalty 𝑟

that represents an immediate value of the state-action transition

indicating the desirability of the resulting state. This generates

a sequence of states 𝑠𝑖, actions 𝑎𝑖, and immediate rewards 𝑟𝑖 as

shown in Fig. 2. The task of the agent is to learn a control

policy, 𝜋 ∶ 𝑆 → 𝐴, that would maximize the expected sum of

rewards, with future rewards discounted exponentially by their

delay. The discount factor is denoted by 𝛾.

Fig. 2 Representation of a reinforcement learning system.

The 𝒬-learning algorithm is described in Table I [8] and can

be explained as follows [8]:

In 𝒬-learning, learning the 𝒬 function corresponds to learning

the optimal policy. The evaluation function the agent attempts

to learn is 𝒬(𝑠, 𝑎) such that the value of 𝒬 is the maximum

discounted cumulative reward that can be achieved starting

from state 𝑠 and applying action 𝑎 as the first action. In this

algorithm, the learner represents its hypothesis 𝒬̂ by a large

table that consists of a separate entry for each pair of state and

action. The table entry for (𝑠, 𝑎) stores the value for 𝒬̂(𝑠, 𝑎),

the learner’s current hypothesis about the actual but unknown

value 𝒬(𝑠, 𝑎). The initial values of the table are set to zero. The

agent recurrently observes its current state 𝑠, chooses some

action 𝑎, executes action 𝑎, then observes the resulting reward

𝑟 = 𝑟(𝑠, 𝑎) and the new state 𝑠′ = 𝛿(𝑠, 𝑎) where 𝛿 is the state

transition function and denotes the state resulting from applying

action 𝑎 to state 𝑠 . It further updates the table entry for 𝒬̂(𝑠, 𝑎)

following each such transition in accordance to the rule given

by (2):

𝒬̂(𝑠, 𝑎)  𝑟 + 𝛾 max 𝒬̂(𝑠′, 𝑎′)

 𝑎′ (2)

This training rule uses the agent’s current 𝒬̂ values for the new

state 𝑠′ to refine its estimate of 𝒬̂(𝑠, 𝑎) for the previous state 𝑠.

𝒬-learning propagates 𝒬̂ estimates one step backwards i.e. each

time the agent moves forward from a previous state to a new

one, 𝒬-learning propagates 𝒬̂ estimates backward from the new

state to the old state. At the same time, the immediate reward

received by the agent for the state-action transition is used to

augment these propagated values of 𝒬̂. After multiple

iterations, the information that the agent collects will propagate

from the transitions with non-zero rewards back through the

entire state-transition space available to the agent, resulting

eventually in a table that consists of the 𝒬 values. Using this

algorithm, the agent’s estimate 𝒬̂ converges in the limit to the

actual 𝒬 function, provided the system can be modeled as a

deterministic Markov decision process, the reward function 𝑟 is

bounded, and actions are chosen such that every pair of state-

action is visited infinitely often. A significant aspect of 𝒬-

learning that makes it scalable is that it can be employed in an

arbitrary environment where the agent or the learner has no

prior knowledge of how its actions affect its environment. The

agent is not required to be able to predict in advance the

immediate result for every possible state-action. In other words,

the algorithm assumes the agent does not have knowledge of

𝛿(𝑠, 𝑎) and 𝑟(𝑠, 𝑎), and that instead of moving about in an

internal mental model of the state space, it must move about the

real world and observe the consequences. Hence, the algorithm

can be applied even if there are newly added states and actions.

TABLE I. 𝒬-LEARNING ALGORITHM, ASSUMING DETERMINISTIC REWARDS AND

ACTIONS. THE DISCOUNT FACTOR 𝛾 MAY BE ANY CONSTANT SUCH THAT 0 ≤
 𝛾 < 1.

For each 𝑠, 𝑎 initialize the table entry 𝒬̂(𝑠, 𝑎) to zero.

Observe the current state 𝑠

Do forever:

• Select an action 𝑎 and execute it

• Receive immediate reward 𝑟

• Observe the new state 𝑠′
• Update the table entry for 𝒬̂(𝑠, 𝑎) as follows:

 𝒬̂(𝑠, 𝑎)  𝑟 + 𝛾 max 𝒬̂(𝑠′, 𝑎′)

 𝑎′
• 𝑠  𝑠′

1 𝒬 is an evaluation function/utility function such that the value of 𝒬 for the

current state and action summarizes in a single number all the information

Using the knowledge of PRB utilization gained from the

output of the ns-3 simulation, US-OCSP has at its core the 𝒬-

learning algorithm implemented in Python and finds the

shortest path with optimal capacity that the user should take

while in transit from a given source to destination. A table of

correspondence to show the representation of network

functions considered in US-OCSP with regards to the 𝒬-

learning parameters is given in Table II. Considering the

network scenario described in Fig. 1, the agent (virtual user)

will explore different paths going from the end-user’s source

and destination using US-OCSP to find the optimal path. Every

time the agent moves from one network node to another, it will

receive an immediate reward for the transition whose value

depends on whether or not there is a valid link established

between the two network nodes and how close or far the

network nodes are from the destination. It then computes the 𝒬̂

value for that transition using the 𝒬-learning algorithm and

continues to refine the 𝒬̂ value until it virtually reaches the

network node that serves the destination. The availability of

network nodes is determined based on their PRB utilization

derived from the ns-3 simulation. The optimal path corresponds

to selecting the links or routes with maximal 𝒬 values. In other

words, the computed 𝒬1 values will help determine which node

to node transitions should be selected to achieve the shortest

path with optimal capacity.

TABLE II. TABLE OF CORRESPONDENCE SHOWING NETWORK MAPPING IN US-

OCSP WITH 𝒬-learning PARAMETERS

𝓠-learning Parameters

Network Mapping

𝑠

A state corresponds to a network

node (eNB/gNB).

𝑎

An action corresponds to the agent's

virtual movement from one network
node to another.

𝑟(𝑠, 𝑎)

A reward is an immediate/instant

value, or score received after every

virtual move of the agent from one
network node to another.

𝒬(𝑠, 𝑎)

A 𝒬 value is computed and refined

recursively using the 𝒬 -learning

algorithm until the agent virtually

reaches the network node that serves
the destination.

needed to determine the discounted cumulative reward that will be gained in

the future if that state-action pair is selected [8].

III. SIMULATION RESULTS AND OBSERVATIONS

Table III provides the simulation parameters used to

implement the network scenario described in Section III using

ns-3.

TABLE III. SIMULATION SET UP PARAMETERS

Parameter

Value

Number of UEs

100

Number of eNBs

10

eNB Bandwidth

20 MHz (100 PRBs)

Scheduler

Token Bank Fair Queue Scheduler
(TBFQ)2

Traffic Type

Constant Bit Rate (CBR)

The output of the ns-3 simulation gives the modulation

coding scheme used and the transport block size for every UE-

eNB pair per unit time. The output is further used to find the

PRB utilization by referring to 3GPP standards [9] and

implementing equation (1). If the PRB utilization of an eNB

was above 70%, it was declared as “busy” and if the PRB

utilization of an eNB was below 70%, it was declared as

“available” in terms of capacity. In accordance to this, eNBs 4,

5 and 6 from Fig. 1 were declared to be “busy” eNBs whereas

eNBs 0, 1, 2, 3, 7, 8 and 9 were declared to be “available.” The

𝒬-learning algorithm is then implemented in Python for

determining the shortest path between the end-user’s source and

destination. When distance is the only criteria used to determine

the path that the end-user should take, the recommended path

given by the algorithm goes via eNBs denoted by nodes 0, 5, 8

and 9. This path is the shortest path that the end-user can take

to reach to the destination, but is not the most efficient path as

it does not verify if all the serving eNBs on this path have

enough capacity available to serve the end-user. In order to find

the most efficient path, the status of all the eNBs based on their

PRB utilization derived from the ns-3 simulation is given as an

input to the 𝒬-learning algorithm. With this knowledge, the 𝒬-

learning algorithm takes into account not only distance but also

available nodal capacity (i.e., eNB or gNB availability of PRBs)

while determining the most efficient path the end-user should

take given a source and a destination. Subsequently, the most

efficient path suggested by US-OCSP goes via eNBs denoted

by nodes 0, 1, 2, 8, and 9 as shown in Fig. 3. Thus, US-OCSP

2 TBFQ, a channel-aware/QoS-aware scheduler derived from the leaky-bucket

mechanism, guarantees the fairness by utilizing a shared token bank and can be

explained as follows [7]: TBFQ maintains a shared token bank so as to balance
the traffic between different flows. The user who contributes more on token

bank has a higher priority to borrow tokens while the user who borrows more

not only avoids all other possible paths that may be longer and

more time-consuming, but it also avoids selecting paths that

may be served by eNBs that due to congestion cannot meet the

capacity (throughput and/or bit rate) needs of the end-user.

Fig. 3 A graphical representation of the 𝒬-learning curve converging towards

the optimal solution.

IV. CONCLUSIONS

This paper introduced and proposed a methodology called

US-OCSP that gives the most efficient path to be followed by

an end-user in terms of distance and capacity in a SON network

using ML given its source and destination. The ML algorithm

used in this research is 𝒬-learning, a form of reinforcement

learning. The effectiveness of this methodology is

demonstrated using a network scenario simulated in ns-3

followed by the ML implementation in Python. The results

showed that the shortest path with optimum capacity is rapidly

determined. This methodology could help network providers to

meet the end-user demands by finding the most efficient path

and to optimize network resource allocation. This paper

demonstrates the potential for implementing US-OCSP in

future networks that will be autonomous and user-centric by

incorporating ML in SON networks where the system can

provide the most optimal path for end-users while moving from

a given source to destination.

REFERENCES

[1] Ljupco Jorguseski, Adrian Pais, Fredrik Gunnarsson, Angelo Centonza,

Colin Willcock, “Self-organizing networks in 3GPP: standardization and future

trends,” IEEE Communications Magazine, Volume: 52, Issue: 12, Pages: 28 –
34, 2014.

[2] 3GPP, The Mobile Broadband Standard, [Online]. Available:

http://www.3gpp.org/

tokens from the bank has a lower priority to continue to withdraw tokens. Users

suffering from severe interference and shadowing conditions get more

opportunities to borrow tokens from the bank.

[3] S. Das, S. Sen, and R. Jayaram, “A structured channel borrowing scheme
for dynamic load balancing in cellular networks,” Proceedings of 17th

International Conference on Distributed Computing Systems, Pages: 116 – 123,

1997.
[4] Andreas Lobinger, Szymon Stefanski, Thomas Jansen, Irina Balan, “Load

Balancing in Downlink LTE Self-Optimizing Networks,” 2010 IEEE 71st

Vehicular Technology Conference, Pages: 1 – 5, 2010.
[5] Vlad-Ioan Bratu, Claes Beckman, “Base station antenna tilt for load

balancing,” 2013 7th European Conference on Antennas and Propagation

(EuCAP), Pages: 2039 – 2043, 2013.

[6] 3GPP TS 28.552, “5G performance measurements,” V15.1.0, December
2018.

[7] ns-3 [online]. Available : https://www.nsnam.org/

[8] Tom M. Mitchell, Machine Learning, McGraw Hill, March 1, 1997.
[9] 3GPP TS 36.213, “LTE; Evolved Universal Terrestrial Radio Access (E-

UTRA); Physical layer procedures,” version 12.3.0 Release 12, October 2014.

