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ABSTRACT Fog networking has recently received considerable attention from a theoretical perspective, but
in order for such networks to be practical several open areas need to be addressed. This paper determines the
optimum number of nodes that should be upgraded to fog nodes with additional computing capabilities in
order to maximize the average data rate and minimize the transmission delay. The optimization is performed
for a given set of wireless channel conditions and a fixed total number of network nodes. It will be shown
that, having more or less fog nodes than the optimum degrades the data rate. The numerical results indicate
that the average data rate can increase nearly an order of magnitude for an optimized number of fog nodes in
case of shadowing and fading. It is further shown that the optimum number of fog nodes does not increase
in direct proportion to the increase in the total number of nodes. Furthermore, the optimum number of fog
nodes decreases when channels have high path loss exponents. These findings suggest that the fog nodes
must be selected among those that have the highest computation capability for densely deployed networks
and high path loss exponent channels.

INDEX TERMS Fog networking, hierarchical networks, SINR, average data rate, transmission delay.

I. INTRODUCTION
A multitude of emerging applications from augmented real-
ity, online gaming, autonomous vehicles, and smart cities
envisioned for IoT/5G wireless networks are expected to
produce an extraordinary increase in the amount of data.
Although such a large-scale increase in data can be pro-
cessed to some extent by cloud computing, the continuously
growing amount of data cannot be tackled solely by cloud
computing, and fog computing has emerged as a promis-
ing method to accommodate the expected demands [1].
Combining the large-scale data processing capability of
cloud computing with the location aware, widely geograph-
ically distributed, low latency data processing capability,
fog computing is expected to be an attractive network
architecture [1]–[5]. This integration of cloud and fog net-
working is quite attractive in that some portion of data in
the network that has stringent latency and throughput require-
ments may be processed by fog computing/networking, while
the rest of data may be processed by cloud computing.
The complementary nature of cloud and fog suggests a
hierarchical network architecture dubbed a cloud-fog-thing
network [1]–[5]. This architecture is a good compromise
between fully centralized cloud networking and fully dis-
tributed fog networking.

Maximizing the average data rate of the promising
cloud-fog-thing network depending on the signal-to-
interference-plus-noise-ratio (SINR) is of paramount impor-
tance to support future 5G applications and use cases. This
can also minimize the transmission delay that leads to a
decrease in latency, which has a significant impact on the
quality of user experience (QoE). In this regard, it is important
to optimize the number of fog nodes in order to maximize
the average data rate so as to minimize the transmission
delay. Finding the optimum number of fog nodes will further
enhance the understanding and impact of the cloud-fog-
thing architecture. While there can be many potential nodes
inside a network that could be upgraded to fog nodes, it is
not clear why one does not update all the potential nodes
to fog nodes to exploit all the available unused resources
in the network. This paper provides answers to these
questions.

A stochastic geometry analysis is used to determine the
optimum number of fog nodes for a given number of nodes
within the area of interest. It is important to note that the
widely used Poisson Point Process (PPP) model in stochastic
geometry is not applicable to this network model for two
reasons. First, the PPP gives accurate models only for large-
scale networks [6] whereas a fog network covers a local area,
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which constitutes a low-to-medium scale network. Second,
and more importantly, the total number of nodes is known
and finite, so that a Binomial Point Process (BPP) better rep-
resents the low-to-medium scale network whose total number
of nodes is known [7].

Fog networking is clearly outlined with its benefits
in [1] and [2] and, the hierarchical cloud-fog-thing network
is justified with different use cases in [3]–[5]. Further, fog
computing based radio access networks (RANs) are discussed
in [8] and [9]. One of the primary ideas common to all these
papers is to upgrade some number of nodes into a fog node.
However, the optimum number of nodes that will be upgraded
to fog nodes aswell as the incentive of not upgrading all nodes
to a fog node are not stated. This study aims to fulfill this gap
in the literature of the cloud-fog-thing network architecture.
The optimum number of fog nodes will be found by assuming
that each node elects itself as a fog node with some proba-
bility. Then, the number of fog nodes becomes np, if there
are n nodes within the area of interest, each of which can be
a fog node with probability p. The same approach is used
to determine the cluster-heads or leaders of each cluster in
wireless sensor networks [10]–[14], however, all those papers
assume that the probability of being a cluster-head is given as
a priori information instead of determining this by analysis.
Reference [15] determines the optimum cluster-head proba-
bility using a PPP model to optimize energy efficiency for
wireless sensor networks, which has some different notions
than fog networking and is quite different than the situation
addressed in this paper where the probability of being a fog
node is found using a BPP model.

As stated in a recent survey paper, determining the opti-
mum number of fog nodes is an open research problem,
and affects the overall network efficiency [16]. Based on
this motivation, the optimum number of fog nodes is deter-
mined for channels with different path loss exponents using
a BPP model. Interestingly, our analysis indicates that too
large or too small number of fog nodes decreases the aver-
age data rate. In addition, how the fog nodes scales with
the incremental total number of nodes for different chan-
nels is quantified. Additionally, the optimum number of
nodes that can be controlled by a fixed number of fog
nodes will also be found in this paper. This analysis might
be useful in the design of the efficient virtual machines
in the cloud, in the determination of the value of K in
K-means clustering algorithm, which may be used to find the
optimum locations of fog nodes, and in enhancing caching
efficiency.

The paper is organized as follows. The network model
and the problem statement are presented in Section II.
In Section III, the problem is formulated to find the
optimum number of fog nodes. Section IV introduces a
stochastic geometry analysis for a BPP model. The derived
closed-form derivations are validated in Section V and
the benefits and planned future research are given in
Section VI. The paper ends with the concluding remarks
in Section VII.

FIGURE 1. Cloud-fog-thing type hierarchical network model.

II. NETWORK MODEL AND PROBLEM STATEMENT
As noted above, it is expected that various applications sup-
ported by 5G wireless networks, and beyond, will require
an interplay between cloud and fog networks. Accordingly,
some portion of data is processed at the fog networks and the
remaining portion of data is conveyed to the cloud. In this
model, the inherent features of the fog layer such as widely
deployed geographical distribution and location awareness is
linked with the large-scale data management capability of the
cloud layer. A system of smart traffic light is one example
that illustrates the interplay between cloud and fog networks
so that distributed traffic lights are connected to each other as
well as vehicles, and pedestrians and bikes intelligently con-
trol the traffic such that local decisions aremade by fog nodes,
and long-term statistics are gathered at the cloud [1]. Another
example is a smart pipeline monitoring system in which the
combination of fog and cloud networks sequentially process
the data coming from the massive number of sensors [3].
The same network model is highlighted in [2] and [4] as
well. In these papers, the network model is composed of the
hierarchical combination of fog and cloud termed as cloud-
fog-thing network as depicted in Fig. 1. Typically, the fog
layer may be composed of many local fog networks located
at parks, shopping malls, restaurants to name a few, and the
thing layer involves the end devices that may be various type
of sensors, IoT devices, or mobile phones.

Bearing in mind the overall network structure and the
general notion of fog networking is that any existing node
in the network can be upgraded to a fog node1 raise the
question of the optimum number of fog nodes that should be
upgraded from the existing nodes in the network, which is
addressed in this paper. Assume that there is a square planar
with one side being is 2a, i.e., from −a to a and the cloud
is located at the center, and the n nodes are randomly and
uniformly distributed around the cloud. At the beginning,
these nodes are assumed to be ordinary, and then, some of
them are specialized as fog nodes that constitute the fog layer
and the rest of them will stay ordinary that constitute the

1We make the assumption that all nodes have fog node capabilities that
may be turned on (or off) using over the air activation (or deactivation).
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thing layer. To find the number of fog nodes, it is assumed
that each node becomes a fog node with probability p, and
this yields n0 and n1 number of ordinary nodes and fog nodes
respectively as n0 = n(1 − p), and n1 = np. In this way,
we transform the problem of explicitly optimizing n1 into
determining the optimum value of p. Note that this paper
solely focuses on finding the optimum number of fog nodes
deferring the question of which nodes should be updated as
fog nodes to [24] and [25].

Clearly there has to be a criterion to determine the optimum
probability of being a fog node p, and thus the optimum
number of fog nodes. In this analysis, the criterion to find
the optimum number of fog nodes is to maximize the data rate
depending on SINR so as to minimize the transmission delay.
Hence, the probability of being a fog node p is optimized, and
the optimum values of n0 and n1 will be found accordingly.
In general, this paper provides a mathematical framework to
specify the optimum number of fog nodes under one fog net-
work so that one can find the optimum number of fog nodes
dynamically even if the total number of nodes changes. Using
this framework, one can determine the maximum possible
nodes that can be controlled by a fixed number of fog nodes
as well.

III. PROBLEM FORMULATION
A stochastic geometry analysis is performed to determine
the optimum number of fog nodes when the end devices
send their packets to the fog nodes, which forward the data
to the cloud after processing some part of the data. In this
model, fog nodes and end devices are considered as points in
2-dimensional Euclidean space. Throughout our analysis, it is
assumed that the total number of points residing in the area
of interest is known, though the number may dynamically
change. Additionally, the number of nodes in the fog layer
and in the thing layer may change. By this is meant that some
nodes in the fog layer may be downgraded to the nodes in the
thing layer or vice versa depending on the change in the net-
work geometry due to mobility, or arrival or departure of the
nodes in the network. A widely used PPP model to accurately
model the large-scale networks for random number of nodes
in stochastic geometry [17] cannot be applied to this problem,
because the total number of nodes is known and finite. Indeed,
this knowledgemeans that a BPP is the appropriate model [7].
Furthermore, the sub-regions covered by fog networks are
not large-scale, i.e., they may be classified as low-to-medium
scale network. Relying on these factors, it is more appropriate
to model the underlying network model as a BPP.

The cloud-fog-thing network architecture can be simplified
as a hierarchical tree based topology for one fog network as
depicted in Fig. 2.2 Here, nodes in the thing layer are termed
as end devices that constitute Tier-0, which are controlled by
the fog nodes located at Tier-1 and the cloud server is situated
at the top layer that is able to control a square planar region
with a side of 2a. Note that fog nodes are connected to each

2All of the links are assumed to be wireless.

FIGURE 2. A simplified tree based hierarchical network model.

other in a circular, fully connected mesh topology, and form
the fog network, which is a generic and an appropriate model
consistent with the definition of a fog network [1], [2].

There is an interplay between the number of nodes at
Tier-1 and Tier-0 so that the number of fog nodes will be
dynamically determined according to the number of end
devices. More specifically, suppose that there are n0 =
n(1−p) and n1 = np end devices and fog nodes, respectively,
and n = n0 + n1. To find the relation among n, n0, and n1,
the optimum probability of being fog node p is found.

Assume that the packet size is M bits and the packet is
partially processed in the fog node, e.g., K bits of the packet
are processed, and the rest, i.e.,M −K bits are relayed to the
cloud. Then, the transmission delay becomes

τtrans =
M
Rfog
+
M − K
Rcloud

(1)

where Rfog and Rcloud are the data rate at the fog node and
cloud as

Rfog = Wlog(1+ SINRfog) (2)

and

Rcloud = Wlog(1+ SINRcloud ) (3)

where W is the bandwidth, SINRfog and SINRcloud are the
SINR at the fog node and cloud, respectively. More specif-
ically, the SINR of the ith end device for i = 1, 2, · · · , n0 at
the fog node becomes

SINRfog(i) =
Pihix

−α
i

σ 2 + Ifog
(4)

where Pi is the transmission power of the ith end device, hi is
the channel power coefficient, xi is the distance between the
end device and the fog node as shown in Fig. 2, α is the path
loss coefficient, σ 2 is the noise variance and Ifog is the residual
interference power at the fog node after some interference
mitigation techniques whose detailed discussion are out of
scope for this paper. Notice that Ifog = 0 in the idealized
case, i.e., if the interference is perfectly mitigated. Similarly,
the SINR due to the jth fog node for j = 1, 2, · · · , n1 at the
cloud can be written as

SINRcloud (j) =
Pjhjy

−α
j

σ 2 + Icloud
(5)
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FIGURE 3. The sample distribution of nodes for a = 10.

wherePj is the transmission power of the jth fog node, hj is the
channel power coefficient, yj represents the distance between
the jth fog node and the cloud, which is depicted in Fig. 2
as well. Icloud is the residual interference power at the cloud.
Similarly, if one makes the assumption of perfect interference
mitigation, Icloud becomes 0.
Consider the simple network structure that demonstrates

the nodes given in Fig. 3. Here, circles represent the ordinary
nodes, some of which will be upgraded to the fog nodes and
the square denotes the cloud. The distance between the circle
that will not be upgraded as a fog node and be upgraded as
a fog node is {xi} and the distance between a circle, i.e., the
circle that will be upgraded to a fog node which is not known
as a priori and found after the optimization, and the square
is {yj}. Bearing in mind this network structure, the objective
function can be written as (6), as shown at the bottom of
this page, in terms of SINR that can maximize the data
rate or minimize the τtrans for the ith end device that sends
packets to the cloud through the jth fog node, becauseW ,M ,
M −K are constant values. For the sake of simplicity, propa-
gation delay is omitted, since the optimization that minimizes
the right-hand side of (6) with respect to the distances can
automatically minimize the propagation delay.

Since the logarithm is a monotone function, (6) is equiva-
lent to

Ĵij = min

(
σ 2
+ Ifog

Pihix
−α
i

+
σ 2
+ Icloud

Pjhjy
−α
j

)
. (7)

Taking the expected value of (7) produces

Ĵij(avg) = min

(
σ 2
+ Ifog
Pi

E
[
xαi
hi

]
+
σ 2
+ Icloud
Pj

E

[
yαj
hj

])
(8)

for given Pi, Pj, σ 2, Ifog and Icloud , which may be either given
as a priori information or estimated at the receiver, and thus

they do not impress the optimization. Also, channel power
coefficients are independent from distances that lead to

J̃ij(avg) = min
(
E[xαi ]E

[
1
hi

]
+ E[yαj ]E

[
1
hj

])
(9)

where E[1/hi] = ci and E[1/hj] = cj such that ci and cj are
constant values. This yields

J singleα = min
(
E[xαi ]+ E[y

α
j ]
)
. (10)

Solving (10) gives one end device for one fog node that
minimizes the transmission delay by maximizing the average
data rate while a packet is sent from an end device to the cloud
through a fog node. Since there are n0 number of end devices
and n1 number of fog nodes, the objective function is defined
as

Jα = min
p

 n0∑
i=1

E[xαi ]+
n1∑
j=1

E[yαj ]

 (11)

assuming that packets coming from the end devices to the fog
nodes are aggregated, partially processed and relayed to the
cloud. Since n0 = n(1 − p) and n1 = np, (11) is optimized
with respect to p, i.e., the value of p that minimizes (11)
gives the number of fog nodes that will be upgraded from
the ordinary nodes, which are randomly spatially distributed
within the area of interest.

IV. THE OPTIMUM NUMBER OF FOG NODES
The number of fog nodes for each fog network can be opti-
mized with respect to the objective function in (11). In the
model, it is assumed that there are n nodes within the area of
interest including n0 end devices and n1 fog nodes so that n =
n0+n1. To find the relationship among n0 and n1, assume that
the probability of being a fog node is p for all n nodes. This
produces n0 = n(1− p), n1 = np end devices and fog nodes,
respectively. Here, the critical point is the determination of p.
Accordingly, first the objective function (11), will be derived
as a closed-form expression in terms of p. Next, the objective
function is optimized with respect to p which determines the
optimum values of n0 and n1. Notice that p = 0 refers to the
fact that there are no fog node whereas p=1 means that all
nodes are fog nodes.

The values of n0 and n1 are optimized for α = 1, α = 2
and α = 4 in this paper. Although the analysis of α = 1 is an
approximation when the nodes are connected to a cable, this
is physically meaningless for wireless connections. The main
reason for analyzing the case for α = 1 is to better specify
the relation between the optimum number of fog nodes and
the path loss coefficient. Following that, the analysis is given
for a free space path loss, i.e., α = 2. Lastly, a more practical
case is considered for α = 4 accounting for the impact of
shadowing and fading.

Jij = min
(

1
log(1+ SINRfog(i))

+
1

log(1+ SINRcloud (j))

)
(6)
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A. HYPOTHETICAL PATH LOSS
The objective function in (11) is first obtained as a closed-
form expression in case of α = 1, which is a physi-
cally meaningless, but a mathematically meaningful quantity
for wireless channels. This yields the following objective
function

J1 = min
p
(x + y) (12)

where

y =
n1∑
j=1

E[yj] (13)

and

x =
n0∑
i=1

E[xi]. (14)

All nodes are assumed to be independently and uniformly
distributed in a given square area of side 2a for 2-dimensional
Euclidean space with coordinates (ix , iy). The expected dis-
tance of a fog node from the cloud can be expressed as

E[yj] =
1
4a2

∫ a

−a

∫ a

−a

√
i2x + i2ydixdiy = 0.765a. (15)

Based on (15), the total distance between the fog nodes and
the cloud given in (13) can be written for n1 = np fog nodes
as

y =
n1∑
j=1

E[yj] = 0.765npa. (16)

The average distance between two arbitrarily located points in
a BPP is required to find (14). Specifically, the mean distance
between a fog node and an end device is needed to find the
value of xi. A recently derived formula specifies the mean
distance between two points for an isotropic BPP [7], as

E[xi] =
ri1/2

(N + 1)1/2
(17)

where r is the maximum range of the fog node, and N is the
total number of end devices controlled by a fog node, which
becomes N = (n− np)/np. This gives

E[xi] =
ri1/2

((n− np)/np+ 1)1/2
. (18)

The maximum range r can be specified by consider-
ing that each fog node, which is located at a center of a
2-dimensional ball b(o, r), has identical range and constitutes
non-overlapping partitions without any loss of generality.
This leads to

r =
πR
np

(19)

where R denotes the radius of the circular mesh fog network.
Based on above, the sum distance between a fog node and end
devices can be written as

n0/n1∑
i=1

E[xi] =
n0/n1∑
i=1

πRi1/2

(np)((n− np)/np+ 1)1/2
(20)

and the total distances due to having np fog nodes is given by

x =
n0/n1∑
i=1

πRi1/2

((n− np)/np+ 1)1/2
. (21)

After some mathematical operations, (21) can be simplified
to

x =
πR(n− np)

np
. (22)

The objective function J1 in (12) can be found, given (16)
and (22) as

J1 =
πR(n− np)

np
+ 0.765npa. (23)

Lemma 1: There is a unique optimum global value of p
that minimizes (23).

Proof: The first and second derivative of (23) with
respect to p is

∂J1
∂p
=

153anp2 − 200πR
200p2

(24)

and

∂2J1
∂p2
=

2πR
p3

. (25)

Since the second derivative of (25) is greater than 0, this
means that (23) is strictly convex function and the value of p
that makes (24) 0 is a global minimum point and unique, if it
exists. Then, the question is whether a real p exists or not.
After some straightforward calculations, p can be approxi-
mately found as

p =
(
200πR
153an

)1/2

(26)

and hence it is a global minimum point and unique. �
Due to Lemma 1, the optimum number of fog nodes for a

given total n number of nodes can be calculated as

n1 =
(
200πRn
153a

)1/2

.

Alternatively, one can determine the optimum number of end
devices in two steps if the number of fog nodes n1 is known.
First the optimum value of p is found as

p =
200πR
153an1

.

Second, the number of end devices is calculated as

n0 =
n1
p
− n1.
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B. FREE SPACE PATH LOSS
For wireless channels the signal power falls off with path loss
exponents of α > 1. In free space the path loss α = 2 and to
find the optimum number of fog nodes, the objective function
can be specified as

J2 = min
p
(x̃ + ỹ) (27)

where

ỹ =
n1∑
j=1

E[y2j ] (28)

and

x̃ =
n0∑
i=1

E[x2i ]. (29)

The closed-form derivation of (28) can be obtained as

E[y2j ] =
1
4a2

∫ a

−a

∫ a

−a
(i2x + i

2
y)dixdiy = 2a2/3. (30)

Generalizing (30) for np fog nodes produces

ỹ =
n0∑
j=1

E[y2j ] = 2npa2/3. (31)

On the other hand, the second moment of the distance
between two arbitrarily located nodes in a BPP is derived
in [7] as

E[x2i ] =
r2i

(N + 1)
. (32)

Integration of (32) into our formulation gives

n0/n1∑
i=1

E[x2i ]=
n0/n1∑
i=1

π2R2i
(np)2((n−np)/np+ 1)

=
(n− np)π2R2

2(np)3
.

(33)

Generalizing (33) for np fog nodes results in

x̃ =
(n− np)π2R2

2(np)2
. (34)

Using (31) and (34), the objective function in (27) becomes

J2 =
(n− np)π2R2

2(np)2
+

2npa2

3
(35)

Lemma 2: There is a unique optimum global value of p
that minimizes (35).

Proof: One can easily show that (35) is a concave
upward function by inspecting its second derivative. For this
purpose, the first and second derivative of (35) is consecu-
tively written as

∂J2
∂p
=

4a2n2p3 + 3π2R2p− 6π2R2

6np3
(36)

and

∂2J2
∂p2
=
π2R2(3− p)

np4
. (37)

It is clear from (37) that the acquired objective function
in (35) is strictly convex for 0 < p < 1. This means that
any real root of (36) minimizes the objective function if such
kind of a p exists. After some mathematical operations, it can
be shown that the optimum value is nearly equal to

p =
(
6π2R2

4a2n2

)1/3

. (38)

Hence, (38) is the unique global minimum point, which
minimizes (35). �
Suppose that there are n number of nodes in an area.

According to Lemma 2, the optimum fog number for this area
becomes

n1 =
(
6π2R2n
4a2

)1/3

.

Analogously, if the number of fog nodes is known as a priori
information, then one can easily find n0 as

n0 =
n1
p
− n1

where

p =
6π2R2

4a2n21
.

C. SHADOWING AND FADING
In wireless channels, shadowing and fading are other factors
that affect the path loss exponent in addition to free space
path loss. Accounting for the impact of free space path loss,
shadowing and fading, it is reasonable to take α = 4 [18]
and formulate the objective function accordingly. More rig-
orously,

J4 = min
p
(x̂ + ŷ) (39)

where

ŷ =
n1∑
j=1

E[y4j ] (40)

and

x̂ =
n0∑
i=1

E[x4i ]. (41)

The expression in (40) can be written similar to (15) and
(30) as

E[y4j ] =
1
4a2

∫ a

−a

∫ a

−a
(i2x + i

2
y)

2dixdiy = 0.62a4 (42)

which results in

ŷ =
n0∑
j=1

E[y2j ] = 0.62npa4. (43)

The fourth moment of a distance that belongs to two points
in a BPP can be specified as [7]

E[x4i ] =
r4i2

(N + 1)2
. (44)
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In the problem at hand, (44) can be interpreted as

n0/n1∑
i=1

E[x4i ] =
n0/n1∑
i=1

π4R4i2

(np)4((n− np)/np+ 1)2
. (45)

This leads to

x̂ =
n0/n1∑
i=1

π4R4i2

(np)3((n−np)/np+ 1)2
≈
π4R4n(1−p)

(np)4
. (46)

Due to (43) and (46), J4 can be given by

J4 =
π4R4n(1− p)

(np)4
+ 0.62npa4. (47)

Lemma 3: There is a unique optimum global value of p
that minimizes (47).

Proof: The first and second derivative of (47) becomes

∂J4
∂p
=

31a4n4p5 + 150π4R4p− 200π4R4

50n3p5
(48)

and

∂2J4
∂p2
=

4π4R4(5− 3p)
n3p6

(49)

respectively. Since (49) is greater than 0 for 0 < p < 1, (47)
is strictly convex. Then, the real root of (48), which is nearly
equal to

p =
(
200π4R4

31a4n4

)1/5

(50)

is the unique minimum. �
As a consequence, the optimum number of fog nodes is

equal to

n1 =
(
200π4R4n

31a4

)1/5

.

Let’s assume that the number of fog nodes is given as a priori
information, i.e., n1 is known. Then, the optimum number of
n0 can be calculated as

p =
200π4R4

31a4n41
so that

n0 =
n1
p
− n1.

V. VALIDATION OF ANALYSES
To develop more insights about the optimum number of
fog nodes in a given area for different path loss exponents,
the derived closed-form objective functions in (23), (35), (47)
are numerically analyzed. In particular, these functions are
plotted with respect to p and the optimum values of p that
minimize the objective functions are found. The numerically
derived p values are compared with the values that are found
analytically (with an approximation) for different path loss
exponents in (26), (38) and (50). Following that, the optimum
number of fog nodes and the average number of end devices

FIGURE 4. The objective function for α = 1 in terms of p.

TABLE 1. The comparison of analytical and numerical results and the
optimum number of fog nodes with average end devices for α = 1.

that are controlled by a single fog node are specified for a
given n. Lastly, the improvement of the average SINR due to
the optimized number of fog nodes is quantified in terms of
data rate that can trivially affect the latency considering the
transmission delay.

In our network model, a cloud covers a large area, and
thus a is selected as 50 km, which corresponds to an area
of 10000 km2. On the other hand, each local fog network
is responsible for a relatively small area. The radius of the
circular fog network is taken asR = 0.0765awithout any loss
of generality, which corresponds to one-tenth of the average
distance between the fog node and cloud, that covers an area
of roughly 45 km2. The analysis is repeated for a total number
of 200, 400 and 800 nodes for one fog network and α = 1,
α = 2 and α = 4.

In the first case, the objective function for α = 1 in (23)
is obtained for n = 200, n = 400 and n = 800 as depicted
in Fig. 4. Notice that as proven in Lemma 1, each curve has a
unique minimum point, and this point specifies the optimum
number of fog nodes. Note that the ratio of fog nodes to
the total number of nodes decreases with increasing n. This
suggests that more devices should be handled by fog nodes in
ultra-densely deployed networks. To bemore specific, Table 1
gives the optimum number of fog nodes and specifies the
average end devices in each fog node for different values of n.
Furthermore, the minimum value of p found in (26) for α = 1
is compared with that obtained numerically in Table 1.

A simulation is performed to compare the average data
rate for the optimized and unoptimized number of fog nodes
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FIGURE 5. The gain with the optimized number of fog nodes in terms of
the average data rate when α = 1.

based on the values in Table 1. It is assumed that there are
200 nodes within the area of interest without any loss of
generality. For the former case, i.e., the optimized number
of fog nodes, there are nearly 8 nodes at the fog layer and
192 nodes at the thing layer. For the latter unoptimized case,
we randomly generate different number of fog nodes and
take their average. Then, the ratio of the average data rate
for the optimized number of fog nodes Ropt and the average
data rate for the unoptimized number of fog nodes Runopt
becomes as illustrated in Fig. 5. As one can observe, the ratio
slightly decreases for higher signal-to-noise ratio (SNR) val-
ues, however, there is still significant advantage of optimizing
the number of fog nodes. Note that this benefit will grow
as the bandwidth increases. For instance, if the bandwidth
is 100MHz, the difference in throughput due to the optimiza-
tion becomes approximately 200 Mbps or if the bandwidth
is equal to 200 MHz, the throughput enhancement becomes
nearly 400Mbps. Additionally, it is straightforward to see this
effect on latency considering the transmission delay, which is
obtained by dividing the packet size by the data rate.

The same experiment is repeated for a path loss exponent of
α = 2 that represents the free space path loss, whose closed-
form objective function is given by (35). The results for α = 2
reveals similar characteristics as with α = 1 and is depicted
in Fig. 6. Here, the numerically determined p is nearly the
same as the analytical result in (38) as shown in Table 2,
which also displays the optimum number of fog nodes in
one fog network and the average number of end devices in
one fog node. One more important point is that the optimum
number of fog nodes inside a fog network decreases with
respect to the previous case, i.e., α = 1 for the same number
of n. For nodes whose signal power falls more rapidly, the fog
nodes that are further from the cloud with respect to the other
fog nodes will significantly decrease the performance. This
means that it may be more advantageous to send the packets
to the closest fog node instead of becoming a fog node that
decreases the overall optimum number of fog nodes. In this

FIGURE 6. The objective function for α = 2 in terms of p.

TABLE 2. The comparison of analytical and numerical results and the
optimum number of fog nodes with average end devices for α = 2.

case, the average number of end devices controlled by a fog
node increases. This result indicates that more computational
power is necessary for the fog nodes in case of channels with
high path loss exponents.

The ratio of the average data rate between the optimized
and unoptimized number of fog nodes are evaluated for
α = 2 as well in Fig. 7 when the total number of nodes is
selected as 200. Although the ratio of Ropt/Runopt shows little
decreases with incremental SNR, it is higher than the case of
α = 1. In fact, the data rate approximately doubles once the
number of fog nodes is optimized, which is quite important
in future wireless networks considering the expected increase
in user demand.

Lastly, channels that are subject to shadowing and fading
are considered to determine the optimum number of fog
nodes to maximize the average data rate. Here, the path loss
exponent is selected as α = 4 as in the derived objective
function (47). The results for this case are illustrated in Fig. 8
and Table 3. Compared to α = 1 and α = 2, the fewer number
of fog nodes, each of which has higher number of end devices,
are needed for α = 4. It can be deduced that providing
services to the end devices by a fog node is more challenging
for channels with higher path loss exponents, because the
increase in the number of end devices complicates the data
processing and resource allocation.

When it comes to specifying the average data rate for
the optimized number of fog nodes, there is a considerable
enhancement with respect to the unoptimized one as depicted
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FIGURE 7. The gain with the optimized number of fog nodes in terms of
the average data rate when α = 2.

FIGURE 8. The objective function for α = 4 in terms of p.

TABLE 3. The comparison of analytical and numerical results and the
optimum number of fog nodes with average end devices for α = 4.

in Fig. 9. More specifically, the average data rate increases
almost be an order of magnitude if the number of fog nodes
is optimized. Notice that the improvement is nearly the same
for different SNR values. This emphasizes that it is much
more important to optimize the number of nodes in the fog
layer and the thing layer for channels with higher path loss
exponents.

The overall results imply that the boost in the number
of total nodes leads to a moderate increase in the number
of fog nodes, whereas there is a significant increase in the

FIGURE 9. The gain with the optimized number of fog nodes relative to
the average data rate when α = 4.

number of end devices. Furthermore, fewer fog nodes are
sufficient in case of severe fading. This indicates that each
fog node must have more resources to manage the needs of
users when there are many nodes in channels with high path
loss exponents. This result also indicates the importance of
cooperation and virtualization in fog networks as we discuss
in the next section. A limiting situation can be to have a large
number of path loss exponent channels that result in a single
fog node with many end devices. As a result, the channels
with smaller path loss exponent have a tendency to have
more fog nodes implying more distributed networking while
the channels with higher path loss exponents tend to a more
centralized solution to maximize the data rate.

VI. ADDITIONAL BENEFITS AND FUTURE WORK
Optimizing the number of fog nodes brings with it numerous
benefits for the design of cloud-fog-thing networks. Regard-
ing the cloud layer of this architecture, whose primary advan-
tage comes from virtualization, the problem of underuti-
lized or overutilized virtual machines is one of the problems
that decreases the efficiency of virtualization. In general,
to balance the loads in virtual machines that run on physical
machines, prediction based algorithms that observe the past
statistics are employed [19]. However, if the load dynamically
changes, i.e., it is time-varying, these sorts of algorithms do
not give accurate estimates. In this situation, the number of
dynamically optimized number of fog nodes may be used
to assist in the design of the virtual machines, which can
be viewed as fog-aided cloud virtualization. The basic idea
here is to associate the virtual machines in the cloud with
different fog nodes whose optimum number is determined
according to the total number of nodes in the area of interest,
and each node has a balanced average load. That is, if vir-
tual machines were created such that each virtual machine
became responsible for an equal number of fog nodes, all
virtual machines would have more balanced loads. This could
minimize the number of physical machines and lead to more
efficient green computing as well. Notice that each fog node
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needs to communicate with a virtual machine in the cloud for
many reasons, e.g., to update its cache, manage its resources
more efficiently, or send some portion of data coming from
end devices to the virtual machines for further processing.
The details of this subject will be handled in future work.

Fog layer design requires not only knowing the optimum
number of fog nodes but also finding the locations of fog
nodes. That is, which nodes in the network are upgraded as
fog nodes, among the many alternatives has to be determined.
Clustering algorithms can be used to determine the optimum
locations of the fog nodes. One of the widely used clustering
algorithm in machine learning is the K -means clustering
algorithm based on the principle of minimizing inter-cluster
distances [20]. Accordingly, the geographical locations of
the potential fog nodes can be considered as a data set that
can be clustered with a K -means clustering algorithm so that
the closest nodes to the center of each cluster, i.e., cluster-
heads, can be upgraded to fog nodes. Despite its simplicity
and efficiency, the major drawback of this algorithm is in the
determination of the value ofK . It is not clear how one should
selectK , and there are only heuristics instead ofmathematical
analysis [21], [22]. As a promising solution, the stochastic
geometry analysis given in this paper can fulfill this gap.
Specifically, the value of K , which is the optimum number of
fog nodes, can be analytically obtained as K = np where n is
given as a priori information and p is derived as a closed-form
expression in (26), (38) and (50). The details of this subject
will be explored in future work as well.

QoE for users in the thing layer is highly related to the
efficient caching mechanism in the fog layer. A recent paper
reveals that the performance of caching depends on both the
capacity of the front-haul network between the fog and the
cloud, as well as the caching resources in the fog nodes for
cloud-fog-thing network [23]. This means that even upgrad-
ing all of the nodes to fog nodes to exploit the unused
resources for the sake of caching is not sufficient to have
better caching performance. Therefore, the optimized number
of fog nodes that can improve the average data rate within
the network will enhance the front-haul capacity and affect
the caching. It is worth noting that evaluating the caching
performance quantitatively in terms of the number of fog
nodes is a good research problem.

VII. CONCLUSIONS
Determining the optimum number of fog nodes, which has
been one of the open questions in the cloud-fog-thing archi-
tecture, is found using the tools of stochastic geometry. This
optimization enhances the average data rate and minimizes
the transmission delay. It is quite meaningful and important
to maximize the average data rate especially for the networks
that require substantial data processing. Optimizing the num-
ber of fog nodes significantly improves the average data rate.
To illustrate, the average data rate doubles and increases by
almost an order of magnitude for the free-space path loss
channels, and shadowing and fading channels, respectively.
Indeed, having more than or less than the optimum number

of fog nodes degrades the average data rate, and its effect
becomes greater for the channels with high path loss expo-
nents. Furthermore, the optimum number of fog nodes
decreases for high path loss exponents channels indicating
that fog nodes must be carefully selected among the nodes
that have the highest computational power for these channels.
The results presented in this paper provide guidelines for
the translation of theoretical results on fog networking to
practical network implementation. Our results may be quite
useful in the design of cloud virtualization, while future work
can be directed towards determining the optimum locations of
fog nodes and enhancing caching performance.
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