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Abstract—Millimeter wave (mmWave) is a key technology to
support high data rate demands for 5G applications. Highly
directional transmissions are crucial at these frequencies to
compensate for high isotropic pathloss. This reliance on di-
rectional beamforming, however, makes the cell discovery (cell
search) challenging since both base station (gNB) and user
equipment (UE) jointly perform a search over angular space
to locate potential beams to initiate communication. In the cell
discovery phase, sequential beam sweeping is performed through
the angular coverage region in order to transmit synchronization
signals. The sweeping pattern can either be a linear rotation
or a hopping pattern that makes use of additional information.
This paper proposes beam sweeping pattern prediction, based
on the dynamic distribution of user traffic, using a form of
recurrent neural networks (RNNs) called Gated Recurrent Unit
(GRU). The spatial distribution of users is inferred from data
in call detail records (CDRs) of the cellular network. Results
show that the users spatial distribution and their approximate
location (direction) can be accurately predicted based on CDRs
data using GRU, which is then used to calculate the sweeping
pattern in the angular domain during cell search.

Index Terms—mmWave, initial access, CDR, machine learning,
RNN, Gated Recurrent Unit.

I. INTRODUCTION

M
ilimeter wave (mmWave) is an enabling technology

for 5G high data rate use cases due to the available

bandwidth at these frequencies. However, the initial access

in mmWave cellular systems is challenging compare to the

current LTE system for two reasons. First, due to the high

isotropic path-loss the mmWave communications requires high

directional transmission. But the UE and gNB do not know in

which directions to transmit (receive) during the initial access.

Second, since the mmWave link is vulnerable to blocking

and beam misalignment, more frequent initial access needs to

be performed [1], [2], [3], [4]. The IEEE 802.11ad standard

adopted two levels initial beamforming training for 60 GHz,

where a coarser sector level sweep phase is followed by an

optional beam refinement phase [5].

Recently context information (e.g., vehicle’s position) and

past beam measurements stored in a database (maintained in

the road side unit in vehicular communications) has been

used as a hint to determine potential beam pairs [6]. Gen-

erally speaking, the initial access procedure can be improved

by richer information, e.g., terminal positions, channel gain

predictions, user spatial distribution, antenna configurations

successfully used in previous accesses, and so on.

The main contribution of this paper is to leverage intelli-

gence from call detail records (CDR) data to rapidly determine

the sweeping direction pattern during the cell discovery phase

in mmWave cellular system using Recurrent Neural Networks

(RNN) to predict the evolution of the CDR pattern.

The remainder of this paper is organized as follows. Section

II discusses the initial access in standalone 5G NR, Section III

presents initial access based on a machine learning approach

using Recurrent Neural Networks (RNNs), Section IV results

are discussed and in Section V the paper discussed the

conclusions.

II. INITIAL ACCESS IN STANDALONE 5G NEW RADIO

The initial access in 5G New Radio (NR) standalone

millimeter wave is a time-consuming search to determine

suitable directions of transmission and reception. The overall

idea of the envisioned mmWave initial access procedure is

summarized in Fig.1 (a) [7]. The problem of interest in this

paper is the cell discovery. In the cell discovery phase, one

approach is sequential beam sweeping by the base station

that requires a brute force search through many beam-pair

combinations between the user equipment (UE) and the gNB

(5G base station) to find the optimum beam-pair (i.e. the one

with the highest reference received signal power (RSRP) level

as shown in Fig.1 (b).The sequential search may result in a

large access delay and low initial access efficiency. This paper

proposes beam sweeping pattern prediction to determine the

beam hopping sequence, based on the dynamic distribution

of user traffic (i.e., CDRs). This is done by using a form

of recurrent neural networks (RNNs) called Gated Recurrent

Unit (GRU). It is worth mentioning that a UE does not only

need to carry out cell search at power-up, but to support

mobility. It also needs to continuously search for, synchronize

to neighboring cells and estimate their reception quality. The

reception quality of the neighboring cells, in relation to the

reception quality of the current cell, is then evaluated to

determine if a handover (for devices in RRC CONNECTED)

or cell reselection (for devices in RRC IDLE) should be carried

out [8].
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Fig. 1: (a) The envisioned procedure for mm-wave initial access. (b) Beam
sweeping during initial access

The standalone mmWave system is subject to significant

coverage issues if beam sweeping (directional transmission)

is not applied during cell search. In the current LTE system,

the initial access is performed on omnidirectional channels,

whereas the beamforming transmission is performed after

establishing the physical link [9]. On other hand, to cope

with the converge issue resulting from the increased isotropic

path loss in mmWave frequencies, in 5G standalone mmWave

cellular systems, the initial access must be performed on

directional channels [10]. In the ongoing 5G NR standalone

mmWave standards meeting, the so-called synchronization

signal block (SSB) was introduced, which comprises a primary

synchronization signal (PSS), a secondary synchronization

signal (SSS), and a physical broadcast channel (PBCH). The

synchronization signal burst was allocated 250 micro seconds,

which was further divided into 14 SSB as illustrated in Fig. 2.

The gNB may sweep 14 different directions (per antenna port)

for the sync transmission. The exact choice of the sweeping

pattern can be left to the cells; this pattern should occur

periodically and the maximum periodicity must be known by

the UE [10].

III. INITIAL ACCESS MACHINE LEARNING APPROACH

To ensure that users can be quickly accessed, a form of

machine learning can be used to optimize the sweeping pattern

of the gNB, including beam direction and sweeping order

according to the predicted user’s spatial distribution from users

historical data (e.g. delay access, access success rate and beam

direction etc.) [11]. The focus of this paper is the sweeping

order in the cell discovery phase. The proposed approach

leverages intelligence from the CDRs data collected from

Milan City network, provided by Telcom Italia as part of their

Big Data challenge [12].
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Fig. 2: Resources allocated to sync transmission

TABLE I: Number of CDRs per sector

Time A B C D

2013-11-17 22:10:00 3 3 3 5
2013-11-17 22:20:00 2 2 2 2
2013-11-17 22:30:00 3 2 1 2
2013-11-17 22:40:00 2 3 3 4
2013-11-17 22:50:00 3 1 2 5

A. Dataset

The data used in this paper is in form of CDRs of Internet

activity, calling and text messages. The dataset measures the

level of interaction of the users and the cellular network

by temporally aggregating CDRs in timeslots of 10 minutes.

The datasets provide spatial information about the each CDR

by using the Milano Grid [13] CDR data, which contains

numbered squares (square ID) that are overlaid over Milan

city. The data lakes the coordinates of each CDR and only

provides the square ID. Therefore to achieve the objective of

the proposed data driven sweeping order, we assume that a

cell is made of four squares in the Milano grid and each

square represents a sector (direction). In order to determine

the users activity in each sector, we count the number of

CDRs that was recorded in the same timestamps in a given

sector. TABLE I presents sample data points, which show the

number of CDRs on ”2013-11-17” at five timestamps in four

sectors denoted by A, B, C and D. In this paper the pseudo-

omni beam transmission is adapted i.e. the gNB transmits the

synchronization signal for a longer duration with a pseudo-

omni beams. The order of the beam sweeping is determined

based on time series prediction using a Neural Networks as

discussed in III-B.

B. Sweeping pattern using time series prediction

The number of CDRs in each sector is a time series as

shown in TABLE I. To determine the sweeping pattern, or

order, a recurrent neural network (RNN) is used to predict the

number of CDRs in all sectors, which is used to prioritize



the sweeping direction accordingly. The RNN architecture is

able to captures dependencies at different time scales. A Gated

Recurrent Unit (GRU) Neural Network with 512 units is used

to predict the number of CDRs in all sectors. The GRU neural

net was first introduced by Cho et al. [14] for a statistical

machine translation task. Fig. 3 illustrates the architecture of

a GRU cell. A GRU made of two gates. The first is the update

gate, which controls how much of the current cell content

should be updated with the new candidate state. The second

is the reset gate, which rests the memory of the cell if it is

closed i.e. the unit acts as if the next processed input was the

first in the sequence.The state equations of the GRU are [15]

reset gate : r[t] = σ(Wrh[t− 1] +Rrx[t] + br),

current state : h′[t] = h[t− 1]⊙ r[t],

candidate state : z[t] = g(Wzh
′[t− 1] +Rzx[t] + bz),

update gate : u[t] = σ(Wuh[t− 1] +Rux[t] + bu),

new state : h[t] = (1− u[t])⊙ h[t− 1] + u[t]⊙ z[t].
(1)

where, g(·) is non-linear function usually implemented by a

hyperbolic tangent, σ is the logistic sigmoid1, Wr,Wz,Wu

are rectangular weight matrices,that are applied to the in-

put x[t] (Number of CDRs in all sectors), Rr,Rz,Ru are

square matrices that define the weights of the recurrent

connections,br,bz,bu are the bias vectors and ⊙ is the

Hadamard product.

After building GRU model, a Mean Squared Error (MSE)

used as the loss-function to be minimized, which measures

how closely the model’s output matches the true output signals.

IV. RESULTS AND DISCUSSION

In our study, two weeks of Milan CDR data (Nov 04, 2013

to Nov 17, 2013) were used to predict the user distribution

in four sectors between the instants when the CDRs are

measured. A total of 1684 sequences was used to train the

GRU model and 188 to test it. The model was trained with 5

epochs, each with 50 steps. The model takes 28min 55s to train

with the above mentioned epochs. Fig. 4 depicts the prediction

performance of the GRU model on the tested sequences. It

can be seen that the prediction are very close to the ground

truth2 most of the time. Based on the prediction the pseudo-

omni beam can be directed toward the sector with a maximum

number of CDRs. In case that the number of CDRs are equal

the gNB chooses the sweeping pattern randomly.

V. CONCLUSION

Data driven beam sweeping (hopping) patterns have been

introduced in this paper. It is shown that the GRU neural

network can predict the CDRs with high accuracy, which is

used to adjust the sweeping pattern in the angular domain.

Although, the pseudo-omni was considered due to the lack of

1The logistic sigmoid is defined as σ =
1

1+e
−x

2In machine learning, the term ”ground truth” refers to the accuracy of the
training set’s classification for supervised learning techniques.
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Fig. 3: A recurrent unit in the GRU architecture. Dark gray circles with a solid
line are the variables whose content is exchanged with the input and output of
the network. Dark gray circles with a dashed line represent the internal state
variables, whose content is exchanged within the cells of the hidden layer.
White circles with +, 1 and represent linear operations [15].

exact user location in the gNB coverage, sweeping with narrow

beam can be done if the data reveals more information about

the locations. Future research directions are to quantify the

access delay of the data driven sweeping order using the GRU

neural net and compare it with sequential sweeping. When

narrow beams are used to transmit the synchronization signals

they have a higher beamforming gain than pseudo-omni beams

and facilitate the selection of the best beam pair between the

gNB and UE during the cell search.
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