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Abstract— Providing high date rates that are independent of  
user location in the network is one of the Fifth Generation (5G) 
wireless network goals. This goal becomes even more 
challenging when the mobility of users is taken into account. 
The handovers that happens as the user crosses from cell to 
another can cause a sever degradation in the user's perceived 
data rate. The concept of Virtual Cell (VC) that is based on 
Coordinated Multipoint (CoMP)  transmission is a promising 
solution for providing high data rates independent of  user 
location in the network, and in particular for cell edge users. 
Multiple base-stations (BS) can coordinate with each other 
creating a Virtual Cell (VC). Users can roam within a Virtual 
Cell (VC) without the need to perform a handover. This 
diminishes the number of handovers a user will encounter, and 
also enhances the data rate for cell edge user by mitigating the 
Inter-Cell Interference (ICI) within a virtual cell. However, to 
enable the concept of Virtual Cells (VCs) rapid decisions need 
to be taken about when to enable / disable the VC mode and 
which Base Stations should be joining/leaving the VC as the 
user roams in the network. In this paper, the performance 
analysis of a novel algorithm based on a modification in the 
hidden layer of the Recurrent Neural Network (RNN), referred 
to as Gated Recurrent Units (GRUs). The RNN-GRU model is 
used for predicting the triggering conditions on enabling / 
disabling the VC mode. Sequences of the Received Signal 
Strength (RSS) values for different users in the network, were 
used for training the RNN-GRU model. After training, the 
RNN-GRU was used to predict the future RSS values, which is 
then used for making proactive decisions on enabling/disabling 
VC mode. Simulation results demonstrates that the 
proposed GRU-RNN model achieves an accuracy of 92% to 
predict the triggering conditions for enabling and disabling 
the CoMP mode as required based on the mobility of users.    
 
Index Terms— Coordinated multipoint (CoMP), virtual 
cell, machine learning (ML), recurrent neural networks 
(RNN), gated recurrent unit (GRU).  
 

                                                
1 There techniques adaptively mute resources that cause strong 
interference which may result in a degradation in the overall system 
throughput.  

I. INTRODUCTION  
he Enhanced Mobile Broadband (eMBB) network is one 
of the 5G use cases, which has the requirements of very 
high data rates, that can reach up to 10 Gbps,  
independent of the user’s location in the network (which 

means providing a uniform user experience across the network) 
[1]. However, the cell edge users can suffer from a degradation 
in the perceived throughput due to several factors such as the 
path loss and the interference from neighboring cells. This 
degradation could greatly undermine the quality of a real- time 
applications that requires a very high throughput.  
 
Moreover, as the user moves from one cell to another the 
handover process is performed in order the maintain the 
connectivity of the user with the network by associating the user 
with the cell that has the best signal quality. During the 
handover process the user will also encounter a degradation in 
the perceived signal quality due to the delay occurring from 
performing the handover process. Therefore, maintaining a 
reliable quality of service as the user roams in the network is a 
challenging goal in future 5G networks. 
 
Some solutions have been proposed to cope with the 
degradation in the throughput for the cell edge users. For 
example, the Inter-Cell Interference Coordination (ICIC) 
technique [2] which was proposed in Long Term Evolution 
(LTE), Release 8, and the enhanced ICIC (eICIC) technique 
proposed [3] in LTE-Advanced (LTE-A), Releases 10 and 11.  
Although these techniques improve the cell-edge user's 
throughput, they can result in a degradation in the overall 
throughput of the system due to the restrictions they enforce on 
using the radio resources in time and frequency1. 
 
Alternatively, Coordinated multipoint (CoMP) transmission 
[4], which was first standardized in Long Term Evolution-
Advanced (LTE-A), Releases 11 and 12, allows the association 
of the user equipment (UE) with multiple BSs (CoMP set). The 
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BSs within the CoMP set can coordinate with each other to 
simultaneously best serve the UE. 5G is expected to further 
leverage the CoMP technology via creating Virtual-Cells (VCs) 
[5], which consist of multiple BSs (CoMP set) and the VCs are 
enabled and adapted according the user’s mobility in the 
network.  
 
The main contribution of this paper is evaluating the 
performance of a novel algorithm that proactively predicts the 
optimal triggering conditions for enabling / disabling the VC 
mode (see Fig.1). The proposed algorithm, which is based on 
Recurrent Neural Networks (RNNs) and Gated Recurrent Units 
(GRUs) uses sequences of Received Signal Strength (RSS) 
values of different mobile nodes for training the RNN-GRU 
model. Simulation results show that the future RSS values can 
be proactively and accurately predicted according to the user 
mobility in the network. Then, decisions on enabling / disabling 
the VC mode can be made based on the predicted future RSS 
values.  
 
The reminder of this paper is organized as follows. Section II 
presents the prior state-of-art on using machine learning (ML) 
in 5G self-organized networks, Section III discusses the CoMP 
management based on ML approach using recurrent neural 
networks (RNN), and Section IV presents the simulation results 
to show the strength of ML in predicting the future RSS values. 
In Section V, the performance analysis is shown and discussed. 
The paper concludes with some remarks in Section VI.     

II. PRIOR STATE-OF-ART ON USING MACHINE 
LEARNING IN 5G SELF-ORGANIZED NETWORKS  

In this section we review some of the prior work that has 
utilized Machine Learning (ML) for predicting the mobility of 
users in wireless networks. In [6], the authors used a Nonlinear 
Autoregressive Exogenous Model (NARX) consisting of 12 
hidden layers that was trained using the RSS values and the 
delays between Access Points (APs). The NARX model was 
able to predict a location which is close to the optimal handover 
location. The variations in RSS, number of cells with RSS 
values above a certain threshold and the past handover rate are 
used in [7] for training the AdaBoost algorithm to predict the 
incident of handover. The coordinates of the past three visited 
locations were used in [9] as features for predicting the user's 
mobility and predicting handovers using a Neural Location 
Indicator. In [9] the cell IDs of the last four cells a user visited 
were used for predicting the next cell ID the user is expected to 
visit in the future. The authors in [10], added the transition time 
slots to the features used for training the model in [9] to improve 
the prediction accuracy. However, the obtained accuracy on the 
next cell predictions was very similar to [9]. Wickramasuriya et 
al. used sequences of RSS values as features for training a RNN 
model based on Long Short-Term Memory (LSTM) to predict 
the next base station (BS) a mobile node will be associated with 
according to the mobility of users [11]. However, in [11] they 
did not consider predicting the optimal triggering conditions for 
enabling/disabling VC according to the user’s mobility - which 
is the goal of our work. 

 
  
Fig. 1: Adaptively enabling / disabling coordinated multipoint (CoMP) 
transmission according to the trajectory of user in the network. (a) Associating 
with the nearest base station (BS). (b) Forming a virtual cell (VC) via enabling 
CoMP cooperating set. (c) Dissolving a VC. 

III. COMP MANAGEMENT BASED ON RECURRENT 
NEURAL NETWORKS 

A. System Model  
A 6 km × 6 km road network with intersections that are 1 km 
apart is simulated, as shown in Fig 2. An eight BSs were 
randomly placed within the road network. Mobile nodes are 
generated at random locations in the road network with speeds 
between 8-12 km/h for pedestrians and between 55-65 km/h for 
vehicles. Intersections are assigned probabilities of 0.5 for 
going straight ahead, or an equal probability of 0.25 for turning 
either right or left. Each mobile node in the network will 
measure the RSS values from the nearest three BSs. The 
measured RSS values are stored in eight-dimensional vector. 
The 3GPP path loss model in [12] is used in the system model. 
This path loss model has an additional term to account for large- 
scale shadow fading.  
 

PL(d) = 128.1 + 37.6	 log(d) + σ,             (1) 
 

Where, d is in kilometers, σ is normally distributed with mean 
zero and variance 9 dB. 

 
 



 
 
Fig. 2: A road network with eight base stations (BSs) (crosses) and a mobile 
node (circle). The grid lines are the roads.  Each mobile node measures the 
received signal strength (RSS) from the three closest BSs. 

B. Dataset  
The dataset used was in the form of an eight-element feature 
vector, where the positions in the feature vector correspond to 
the base stations with their RSS values. The RSS values, from 
the closest Base stations to the mobile node, are stored at their 
corrosponding locations in the eight-element feature vector and  
the remaining elements are set (which are the furthest five base 
stations). As the mobile node moves across the network, the 
closest three BSs to the mobile node will change, and the RSS 
values from the closest three base stations will get updated and 
stored consecutively in a queue data structure. TABLE 1 
presents a sample of the RSS data recorded for nine nodes (in 
rows) in the road network from the eight base stations (in 
columns).A total of 100,000 sequences of different mobile 
nodes are collected using this simulation.  
 

TABLE 1: Sample of RSS values for different nodes  
  

BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8 
0.0 0.0 0.0 -88.5 -102.1 -107.8 0.0 0.0 
0.0 -83.5 -107.0 0.0 -90.8 0.0 0.0 0.0 

0.0 -82.1 - 60.7 0.0 -98.4 0.0 0.0 0.0 

0.0 0.0 -95.9 -91.6 -82.5 0.0 0.0. 0.0 
0.0 0.0 0.0 -79.5 -82.5 -101.8 0.0 0.0 

0.0 -73.5 -117.0 -80.5 0.0 0.0 0.0 0.0 
0.0 -85.1 - 90.7 -60.3 0.0 0.0 0.0 0.0 

0.0 0.0 -85.9 -81.6 -92.5 0.0 0.0. 0.0 
0.0 0.0 0.0 -98.5 -112.1 -105.8 0.0 0.0 

                                                
2 The logistic sigmoid is defined as 𝜎 = 5

56789
 

 
C. Recurrent Neural Networks (RNN) - Gated 

Recurrent Unit (GRU) model 
The Recurrent Neural Network (RNN) detects the patterns in 
sequential information. Unlike conventional Neural Networks 
(NN), RNNs have a memory which stores information about 
what happened in all previous time steps for learning a large 
range of dependencies. The Gated Recurrent Unit (GRU) is a 
modification to the hidden layer (H) RNN [13], to solve the 
vanishing gradient problem. The conventional RNN 
architecture is illustrated in Figure 3. A GRU is made up of two 
gates, as shown in Figure 4. The first is the update gate, which 
controls how much of the current cell content should be updated 
with the new candidate state. The second is the reset gate, which 
resets the memory of the cell if it is closed. The GRU state 
equations are [13].  
   
reset	gate:	𝐫[t] = 	σ(𝐖D𝐡[t − 1] + 𝐑D𝐱[t] +	𝐛D),												(2)           

 
current	state: 𝐡N[t] = 	𝐡[t − 1]⨀		𝐫[t],																																			(3)                               

 
candidate	state: 𝐳[t] = 	g(𝐖R𝐡N[t − 1] + 𝐑R𝐱[t] +	𝐛R), (4)  

 
update	gate: 𝐮[t] = 	σ(𝐖V𝐡[t − 1] + 𝐑V𝐱[t] +	𝐛V),									(5)         

 
new	state: 𝐡[t] = (1 − 𝐮[t])⨀𝐡[t − 1] + 	𝐮[t]⨀	𝐳[t],					(6)       
 
where, g(. ) is a hyperbolic tangent, σ is the logistic sigmoid2, 
𝐖D𝐖R𝐖Vare weight matrices, x[t] is  the input of the RSS 
values from all eight BSs, 𝐑D𝐑R𝐑V  are square matrices that 
define the weights of the recurrent connections, 𝐛D𝐛R𝐛V are the 
bias vectors, and ⨀ is the Hadamard product.  
After constructing the RNN-GRU model, the prediction error is 
evaluated using the Mean Square Error (MSE) loss function. 
The loss function, which measures the difference between the 
true and the predicted RSS values, is defined as follows. 
  

MSE = 	ℒ]𝐘𝐢, 𝐘àb = 	
1
N	dd]𝐘𝐢,𝐭 − 𝐘`,𝐭fbg
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Fig. 3: (a) Th structure of a conventional RNN. (b)  The unfolded RNN structure 
in time when using the GRUs in the hidden layers. 
 

 
 
Fig. 4:  Gated Recurrent Unit (GRU) architecture. Dark gray circles with a solid 
line are the variables whose content is exchanged with the input and output of 
the network. Dark gray circles with a dashed line represent the internal state 
variables, whose content is exchanged within the cells of the hidden layer. 
White circles with +, 1 and represent linear operations. 
 
Where N is the number of training examples, 𝐗l,i is the vector 
of observed RSS values from each of the 8 BSs,  𝐘𝐢,𝐭 is the 
vector of true RSS values and  𝐘`,𝐭f  denotes the predicted RSS 
values (the output of the GRU-RNN model).  The purpose of 
training the GRU-RNN model is to minimize the loss function 
by choosing a proper weighting matrix 𝐖 . Thus, the 
optimization problem can be formulated as follows.  
 

min
𝐖

1
N	dd]𝐘𝐢,𝐭 − 𝐇(𝐗𝐢,𝐭)b

g	
h

ij5

k

lj5

= 	min
𝐖

1
N	dd]𝐘𝐢,𝐭 −𝐖𝐓𝐗𝐢,𝐭b
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						(8) 

 

IV. SIMULATION RESULTS  
The RNN-GRU model used in our simulation consists of 512 
GRUs. The total of 100,000 sequences that were collected are 
splitted into 70,000 sequences for training and 30,000 
sequences for testing.  In Figure 5, it was shown that the  
predicted RSS values using RNN-GRU model are close to the 
true RSS values over the 120 time steps. The network can use 
the predicted RSS values for making proactive decisions on 
enabling/ disabling the VC mode to provide a high data rate 
independent of user’s location in the network. 
 
Fig. 6 shows the cumulative distribution function (CDF) of the 
enabled virtual cells when the GRU-RNN predictive model is 
applied. Note that the virtual-cell mode is enabled 14 times 
during the whole duration of time that nodes spend within the 
network with a probability approximately of 0.95, instead of 
relying on static virtual cell. Fig. 7 depicts the gradual decrease 
of the loss function represented in (7) as a function of the 
number of epochs. It shows that with 75 training epochs, the 
testing error based on MSE gradually converges.       
 

 



 
Fig. 5: True versus predicted Received Signal Strength (RSS) values for two 
different UE. (a) True and predicted RSS values measured from closet three 
BSs (3, 4 and 5). (b) True and predicted RSS values measured from closet three 
BSs (4, 5 and 6). 
 

 
Fig. 6: The CDF of enabling virtual cells using GRU-RNN predictive model.  
  

 
Fig. 7: Convergence of GRU-RNN training model calculated based on Mean 

Square Error loss function. 

V. PERFORMANCE ANAYLISIS AND DISCUSSION   
In this section, the performance of ML-based virtual-cell 
systems are evaluated in terms of the precision and recall. As 
illustrated in section IV, for any node in the network, the future 
RSS values from each of the 8 BSs are predicted using the 
GRU- RNN model. The predicted RSS values are then used to 
make cooperative decisions among the BSs for enabling or 
disabling the virtual cell mode. The process of making 
proactive decisions about enabling or disabling VC mode 
becomes a binary classification problem and hence the 
precision and recall performance measures can be used for 
evaluating 
 
 our model. 

A. Precision 
The precision is the used to measure the exactness of a 
classifier. It is calculated by dividing the number of True 
Positives (TPs) by the number of the True Positives (TPs) and 
False Positives (FPs). In our system, TP and FP represent the 
number of true predictions about enabling VC mode and the 
number of false predictions about enabling VC mode, 
respectively, for each node in the network. Low precision of the 
classifier indicates that the classifier enables the VC mode 
when it’s not actually needed, which results in wasting the 
network resources.  

Total	precision = 	d
TP

TP + FP

s

tj5

	% = 	86.68	% 

B. Recall 
The recall is another performance measure that is used to 
measure the competence of a classifier. It is calculated by 
dividing the number of True Positives (TPs) by the number of 
True Positives (TPs) and the False Negatives (FNs). In our 
system the number of False Negatives (FNs) represents the 
number of false predictions about disabling VC mode. The low 
recall of the classifier indicates that the classifier disables the 



VC mode when it is actually needed, resulting in degradation 
of the quality of signal received by a node.    
 

Total	recall = 	d
TP

TP + FN

s

tj5

%	 = 89.71	% 

C. Accuracy  
This performance measure is defined as the ratio of decisions 
made by the correct predictions of enabling /disabling the VC 
mode to the total number of decisions. 
 

Accuracy = 	d
TP + TN

TP + FP + FN + TN

s

tj5

	% = 	92.80	% 

 

VI. CONCLUSION 
In this paper, the use of Machine Learning (ML) for proactive 
mobility management in 5G wireless networks is evaluated in a 
representative scenario. In particular, the performance of the 
RNN-GRU model is evaluated in predicting the triggering 
conditions for enabling /disabling the VC mode. The RNN-
GRU model was trained using RSS values measured from all 
the BSs in the network. After the training is complete, the 
proposed RNN-GRU model was used for predicting the future 
RSS values, which was then used for making proactive 
decisions on enabling/disabling VC mode. The proposed 
algorithm is a promising approach that can achieve the goal of 
very high date rates independent of the user’s location in the 
network via enabling the use of VCs as needed. Moreover, 
considering the low latency requirements of the future 5G 
networks, the proposed algorithm provides rapid proactive 
mobility management for enabling/ disabling the VC mode. 
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